
1 6.874/6.807/7.90 Computational functional genomics, lecture 16 (Jaakkola) 

Acausal and causal models 

Bayesian networks and causality 

Probability models such as Bayesian networks do not inherently capture causal relations 
between variables. Bayesian networks, for example, attempt to model how variables depend 
on (are independent of) each other, not whether one causes the other. Saying that two 
expression profiles are correlated is obviously not a causal statement. Nevertheless, due to 
the fact that Bayesian networks are represented by acyclic directed graphs, there’s often a 
temptation to interpret the graphs causally. We will begin here by discussing briefly why 
this is not appropriate in general. 

Suppose our variables represent expression changes from one experiment to another and 
are discretized as −1, 0, 1 (down, unchanged, or upregulated relative to the control, 
respectively). Suppose f1 and f2 are genes corresponding to known transcription factors 
and g is a particular gene (ORF). The graph that best models the data pertaining to these 
three proteins might look like figure a) below: 

a) 

gf1 f2 

b) 

gf1 f2 

c) 

gf1 f2 

The Bayesian networks in figures b) and c) are, however, probabilistically equivalent – the 
graphs constrain the associated probability distribution over the three variables in exactly 
the same way (assuming we have imposed no prior constraints on how the variables can 
depend on each other). As a result, all three graphs would yield the same score based on 
the available data. While we cannot distinguish the three graphs as probability models, 
their (posthoc) causal interpretations are radically different. 

Note that this simple example holds for any type of data we might have available, including 
gene knockouts that in principle could (should) be interpreted causally. We have to be 
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more careful in how Bayesian networks are estimated from data in order to ensure that the 
arrows can be interpreted causally. 

Causal and noncausal probability models 

Contrast: Let’s start by contrasting predictions from two identically probability models 
that differ only in terms of whether we interpret the arrows causally: 

f g 

+ 
f g 

+ 

Probabilistic Causal probabilistic 

1) observational queries: same predictions 
2) knockout of f : g down g down 
3) knockout of g: f down f unchanged 

where by observational queries we mean questions like “If I see g down regulated in a 
particular experiment, what can I say about f?”. 

The models make different predictions only when we are interested in the parents (natural 
causes) in the graph following an intervention. By knocking out g we obviously bypass the 
natural mechanism where the expression of g is controlled by f . We shouldn’t therefore try 
to “explain” the low expression of g as coming from changes in f . The causal probability 
model takes this into account appropriately. The acausal model, on the other hand, uses 
the estimated dependence between the two variables to answer a different (noncausal) 
question: “what can I say about f in cases where the expression of g is low?”. 

Simple causal models 

Consider the following set of simple causal models. We assume that the models are qualita
tive in the sense that there’s little uncertainty in the predictions that they make in response 
to specific interventions such as knocking out g (setting g = −1). 
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model prior probability 
f g

f g 

+ 

f g 



f g 

+ 

f g 



causal graph prediction under set(g = −1) 

M0 P (M0) = 1/2 f unchanged (0) 

M1 P (M1) = 1/8 f unchanged (0) 

M2 P (M2) = 1/8 f unchanged (0) 

M3 P (M3) = 1/8 f down (1) 

M4 P (M4) = 1/8 f up (+1) 

There are three problems with have to be able to solve with these models. 

1. Represent prior uncertainty about the possible causal models. This is captured by 
the distribution P (Mi) and is simple enough to define in the presence of only a few 
alternative models. The step is more challenging with large scale models. 

2. Make predictions in light of the model uncertainty. In other words, given any specific 
experiment we should be able to provide a probability distribution over possible 
outcomes. This distribution is affected by both the model uncertainty as well as 
probabilistic predictions from individual models (our models are deterministic). 

3. Revise the distribution over possible models based any specific experiment and ob
serbed outcome. 

We will now solve the second and the third problem; a possible distribution P (Mi) is already 
provided in the above table. Since the simple causal models make deterministic predictions 
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in response to knocking out either f or g, the only uncertainty in our predictions comes 
from not knowing which model is correct. So, for example, if we intervene and knock out 
g, formally set(g = −1), we can calculate the predicted responses as follows: 

P (f = 0 set(g = −1)) = P (M0)P (f = 0 set(g = −1), M0) + . . . + P (M4)P (f = 0 set(g = −1), M4)| | |

where P (f = 0 set(g = −1), Mi) is either zero or one depending on whether the determin|
istic prediction from model Mi agrees with f = 0. Quantitatively 

1 1 3 
P (f = 0 set(g = −1)) = 1 + . . . + 0 =|

2 
· 

8 
· 

4 

We can similarly evaluate P (f = −1|set(g = −1)) and P (f = 1 set(g = −1)). |

The third and the last problem can be solved simply by Bayes rule. Suppose the outcome 
of the experiment set(g = −1) is indeed f = 0. Then 

P (Mi)P (f = 0 set(g = −1), Mi)|
|
|

P (Mi set(g = −1), f = 0) = 
P (f = 0 set(g = −1)) 

where we have already evaluated the denominator. Only the first three models are consis
tent with f = 0 under experiment set(g = −1) and thus 

P (M0|set(g = −1), f = 0)) = 
1/2 · 1 

3/4 
= 

2 

3 

P (M1|set(g = −1), f = 0)) = 
1/8 · 1 

3/4 
= 

1 

6 

P (M2|set(g = −1), f = 0)) = 
1/8 · 1 

3/4 
= 

1 

6 

and the remaining posterior probabilities are zero. The number of viable models can 
therefore rapidly shrink in response to judiciously chosen experiments. 

Large scale molecular interaction models 

We can extend the reasoning presented in the simple case to models that attempt to 
capture annotated molecular interactions graphs (proteinprotein or proteindna and their 
properties) on a genomic scale. We will discuss here briefly how the three problems are 
solved in this case. 
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Problem 1. We can specify a probability distribution over possible annotated molecular 
interaction graphs by decomposing this distribution as a product of probabilities pertaining 
to individual features. So, for example, in the absence of any information about whether 
a factor is an activator or repressor of a gene, we would assign probability 1/2 to both + 
and − annotation of the corresponding proteindna interaction. The interaction itself has 
a certain probability of being present and so on. 

In addition to the annotations we have to also provide ways of linking such causal models to 
the data. As before, the effect of a single knockout is assumed to propagate downstream of 
(oriented) interactions but the path(s) that are active in terms of carrying the effect need 
to be chosen. Thus the model involves also variables pertaining to (a priori) uncertain 
selection of active pathways. Only pathways related to actual experiments need to be 
considered. In the figure below, the ovals represent different types of variables needed to 
specify this type of annotated interaction graphs (and how they relate to data); the square 
nodes indicate available evidence or constraints about the values of the variables (e.g., 
interactions along a pathway have to exist and need to be oriented appropriately). 

Data/inference

0/1

0/1 +/-

0/1 +/-

0/1

Protein-DNA

Pathway

Protein-protein

. . .

(tens of thousands of variables)

• Data association
– protein-DNA interactions [Lee et al. 2002]
– protein-protein interactions [YPD/DIP databases]
– gene knock-outs [Hughes et al 2000]

• Distributed inference
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Problem 2. The solution is formally the same as before but cannot be in general solved 
exactly due to the large number (and the type) of possible interaction graphs. There are 
however a number of approximate algorithms (e.g., belief propagation) that can be used to 
generate predictions from this class of models, i.e., effectively carrying out the summation 
over the large number of possible models. 

Problem 3. This step is again formally identical but carried out approximately in a 
distributed manner. In other words, we don’t necessarily need to know the posterior prob
ability of each possible graph but rather the probabilities that different features are present 
(a specific proteinprotein interaction, a factor functions as an activator, etc). Such prob
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abilities are averages relative to the full posterior. For example: 

P (Kss1 → Ste12 data) = P (Mi|data) |
models Mi for which Kss1 Ste12→

These marginal probabilities are often easy to evaluate approximately. 


