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Expression arrays, normalization, and error models 

There are a number of different array technologies available for measuring mRNA transcript 
levels in cell populations, from spotted cDNA arrays to insitu synthesized oligoarrays, 
and other variants. Our goal here is to illustrate basic computational methods and ideas 
involved in teasing out the relevant signal from array measurements. For simplicity we will 
focus exclusively on spotted cDNA arrays. 

Spotted cDNA arrays are geared towards measuring relative changes in the mRNA levels 
across two populations of cells, e.g., cells under normal conditions and those undergoing a 
specific treatment (e.g., nutrient starvation, chemical exposure, temperature, gene deletion, 
and so on). The mRNA extracted from the cells in each population is reverse transcrib ed 
into cDNA and labeled with a fluorescent dye (Cye3 or Cye5) specific to the population. The 
resulting populations of differently labeled cDNAs are subsequently jointly hybridized to the 
matrix of immobilized probes, complements of the cDNA targets we expect to measure. 
Each array location or spot contains a number of probes specific to the corresponding 
target to ensure efficient hybridization. We won’t consider here the question of how the 
probes are/should be chosen, for example, to minimize potential crosshybridization (target 
hybridizing to a probe other than the intended one). By exciting the fluorescent dyes of the 
hybridized targets on the array, we can read off the amount of each cDNA target (hybridized 
to a specific location on the array) corresponding to each population of interest. By jointly 
hybridizing the two populations we can more directly gauge any changes in the mRNA levels 
across the two populations without necessarily being able to capture the actual transcript 
levels in each. This type of internal control helps determine whether a gene is up or down 
regulated relative to the control. 

Array measurements are limited by the fact that we have to use a large number of cells 
(10,000 or more) to get a reasonable signal. When the cell population of interest is relatively 
uniform this typically doesn’t matter. However, when there are two or more distinct cell 
types in the population, we might draw false inferences from the aggregate measurements. 
Suppose, for example, that gene A is active and gene B is inactive in cell type 1 and that 
the converse holds for cell type 2. We would see both genes active in the array measurement 
but this conclusion matches neither of the two underlying cell types. We will return to this 
issue later on in the course. 
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Normalization 

To use the arrays we have to first normalize the signal so as to make two different ar
ray measurements or the two channels (specified by the fluorescent dyes) within a single 
array mutually comparable. By normalizing the signal we aim to remove any systematic 
experimental variation. For simplicity we will consider here only normalization to remove 
biases arising from the differences between the two dyes. The effect can be easily seen by 
swapping the dyes between the control and treatment populations or by using two identical 
populations with different dyes. The biases we observe may arise during sample prepara
tion due to differences in how effectively the dyes are incorporated, or later due to different 
heat and light characteristics of the dyes. 

The simplest way to normalize the signal from the two channels would be to equalize the 
total measured intensity across the spots. The assumption here is, of course, that the 
overall amount of mRNA transcript is the same in two the cell populations (control and 
treated). A slightly better approach would be to normalize based on the total intensity 
across genes unlikely to change due to the treatment (e.g., housekeeping genes); defining 
this set may be difficult, however. 

We will consider here a slightly different approach. Suppose first that for genes that remain 
unchanged due to the treatment, the measured intensities, in the absence of noise, are 
proportional to each other: R = kG, where R and G are the signals from the red and 
green channels, respectively, and k is an unknown constant we have to estimate. We do not 
assume that we know which genes remain unchanged and which ones (or how many) have 
widely different expression levels due to the treatment. For this reason we cannot equalize 
the total signal from the two channels. A robust alternative is to set k so that log R/kG 
(logratio of the corrected signals) has median zero. While this value can be computed 
directly, we formulate the problem in terms of robust estimation for later utility: we’d like 
to find c = log(k) that minimizes 

n

log Rj − c − log Gj| |
j=1 

where the summation is over n probes/spots on the array and | · | denotes the absolute 
value. To see that we get the same answer in this case, we can take the derivative of 
this objective with respect to c (recalling that the derivative of the absolute value is ±1 
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depending on the sign of the argument1) and set it to zero 

d n

log Rj − c − log Gj = (+1) · (−1) + (−1) · (−1) = 0 
dz j=1 

| | 
j:log Rj/Gj>c j:log Rj/Gj<c 

This condition ensures that, at the optimum, we balance the number of probes for which 
log Rj/Gj is greater than c and those for which it is less than c. The optimal c is therefore 
the median value of log Rj/Gj. Geometrically, setting c corresponds to centering a 45
degree line in the log R versus log G scatter plot from origin (no bias) to the center of the 
cloud of points (see figure below). 

Array normalization: single array
• When there’s a multiplicative difference in the dye bias

(something we could also hope to remove to a degree by
overall intensity normalization), the figure would look like
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• We can think of removing the effect by moving the coordinate
system so that we are back in the earlier situation.

• How can we do this more formally?
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The dye biases may depend on the intensity as well. For example, we might suspect that 
the intensities for identical transcript levels would relate as R = kRp for some k and p. As 
before, we could estimate the parameters p and c = log(k) by minimizing 

n

log Rj − c − p log Gj| |
j=1 

This is, however, not quite correct. We should measure the deviations orthogonally to the 
line log R = c + p log G, not vertically, since both measurements log R and log G involve 
errors (see figure below). 

1We omit here the special cases when the argument is exactly zero. 
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Single array normalization: robust regression
• We need to find the line corresponding to most genes

whose expression in the two channels differs only by noise;
differentially expressed genes would appear as “outliers”

Let ek is the signed orthogonal distance from the regression
line to (log Rk, log Gk)
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Estimation criterion: find the regression line that minimizes
some measure (loss) of the orthogonal distances
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For any given slope p the orthogonal distance is proportional to the vertical distance and 
so we can easily correct the above objective: 

ej 

n� 1 
log Rj − c − p log Gj| | · √

p2 + 1 j=1 

By defining c� = c/
√

p2 + 1 and p� = p/
√

p2 + 1 the optimization problem we have to solve 
still has the same form: 

n

log Rj − c� − p� log Gj| |
j=1 

with the constraint that p� [−1, 1]. After solving for c� and p� we can reconstruct c and∈ 
p to perform the normalization. 

Differential expression 

Suppose now that we have removed all the systematic variations, e.g., due to the dye 
biases. The first type of inference we’d like to make on the basis of the array measurement 
is to determine which genes are differentially expressed (up or down regulated) due to the 
treatment. Here we consider making these decisions on the basis of a single array; the 
decisions can obviously be strengthened by carrying out the experiment in duplicate or 
triplicate as is typically done in practice. The methodology we discuss here can be directly 
extended to include multiple replicates. 

A simple approach would be to assume that for genes that are not differentially expressed 
log R/G ∼ N(0, σ2). In other words, the null hypothesis for each gene is that the logratios 
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follow a normal distribution with mean zero and variance σ2, where the variance does not 
depend on the spot. This normal distribution summarizes the experimental variation we 
expect to see on spots that should return identical intensity values from the two channels. 
We could estimate the variance from the measured logratios corresponding to housekeeping 
genes that are assumed not to change their expression due to the treatment. For other genes 
we could use the normal distribution to evaluate a pvalue for differential expression: the 
probability mass of the tail of the normal distribution at the observed value of the logratio. 

The problem with this approach is that it only pays attention to the logratio log R/G. 
Thus decisions are made as confidently when the intensity measurements R and G are very 
low (at noise level) as when they are high (clear signal). 

We follow here a bit more sophisticated hierarchical Bayesian approach. The basic idea 
is very simple. We wish to gauge, for each gene, whether we can explain the observed 
intensities from the two channels by assuming a common biological signal, or whether we 
have to accept that the intensity differences are too large to be explained by experimental 
noise. But we have to define “experimental noise” and what type of biological signal to 
expect so they can be compared. 

Let’s start by specifying the experimental variation for a single channel (say red). We 
expect the intensity measurements for a given biological signal to be distributed according 
to a Gamma distribution: Rj ∼ Gamma(a, θj), where a is called the shape parameter and 
θj is the (inverse) scale parameter. The shape parameter is common to all genes, while 
the scale parameter characterizes the underlying biological signal and varies from gene to 
gene. The mode (peak) of this distribution occurs at intensity (a − 1)/θj; the mean is a/θj 

and the variance is given by a/θj
2 . The distribution has “heavy tails” meaning that larger 

errors are also permitted. We don’t expect to know either of the parameter values; a will 
be estimated on the basis of the array measurements. 

We expect the biological signals (scale parameters) θj to be independent for each gene 
(spot) and also follow a Gamma distribution θj ∼ Gamma(a0, v), with a common shape 
parameter a0 and scale v. So, according to this model, we could generate biological signals 
for each spot on the array by drawing independent samples from this Gamma distribution. 
The actual intensity values that we would expect to see on the spots would be subsequently 
sampled from Rj ∼ Gamma(a, θj), separately for each spot, as discussed above. The fact 
that we have chosen to use Gamma distributions is largely for mathematical convenience 
albeit they have some appropriate qualitative features (e.g., normal looking peak, heavy 
tails). As a first approximation we have also chosen to consider each spot independently of 
others; in other words, we decide whether a gene is differentially expressed largely by looking 
only on the intensity values from the two channels for that gene (save the parameters of 
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the Gamma distributions that are estimated on the basis of all the spots). 

We are now ready to define what expect in terms of intensity measurements from the two 
channels when they are/are not assumed to be differentially expressed: 

H0: same biological signal at j 

θj ∼ Gamma(a0, v) 

Rj ∼ Gamma(a, θj), Gj ∼ Gamma(a, θj) 

H1: differential expression at j 

θj
R ∼ Gamma(a0, v), Rj ∼ Gamma(a, θj

R) 

θj
G ∼ Gamma(a0, v), Gj ∼ Gamma(a, θj

G) 

In other words, we sample different biological signals for the two channels if they are 
differentially expressed; otherwise we sample a common signal. These sampling schemes 
give rise to two different (continuous) mixture distributions over the observed intensities: 

P (Rj, Gj|a0, v, a,H0) = Gamma(θj; a0, v) Gamma(Rj; a, θj)Gamma(Rj; a, θj) dθj 
θj 

where, for example, Gamma(Rj; a, θj) is the pdf for a Gamma distributions with parameters 
a and θj. The integration over θj represents the fact that we need to account for different 
levels of underlying biological signal, in proportion to our expectations. The measurements 
Rj and Gj are not independent since they share a common biological signal. Similarly, 

P (Rj, Gj|a0, v, a,H1) = P (Rj a0, v, a,H1)P (Gj a0, v, a,H1)| |

where, for example, 

P (Rj|a0, v, a,H1) = 
θ

Gamma(θj
R; a0, v)Gamma(Rj; a, θj

R)dθR 
jR

j 

Note that in this case Rj and Gj are independent since they have no common covariate. 

We have now two competing explanations for measurements from the two channels, one that 
assumes a common biological signal, and the other that doesn’t (differential expression). 
For any particular gene we don’t know a priori whether it is differentially expressed. We 
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will therefore have to entertain both possibilities and infer which explanation is more likely. 
Assuming a prior probability p for the fact that any specific gene is differentially expressed, 
our model over the intensity measurements (Rj, Gj) is given by 

P (Rj, Gj a0, v, a, p) = p P (Rj, Gj a0, v, a,H1) + (1 − p) P (Rj, Gj a0, v, a,H0)| | |

This is again a mixture model, a mixture of two distributions that are themselves mixtures. 
What’s left to do for us is to estimate the four parameters in this model a0,v, a and p. 
We find the setting of these parameters that maximize the probability of reproducing the 
observations across the spots on the array (maximum likelihood fitting): 

n

P (Rj, Gj|a0, v, a, p) 
j=1 

This task may look a little daunting but can be done analogously to the EMalgorithm 
we have used previously for estimating mixture models (motifs). Here, in the Estep we 
evaluate for each gene the posterior probability that it is differentially expressed and what 
the biological signal might be. Once we have these posteriors, we can, in the Mstep, 
essentially just estimate the Gamma distributions from weighted observations. We omit 
the details of the algorithm. 

We are now ready to make decisions concerning differential expression. Given the estimated 
parameters ˆ v, ˆ p (where the hat denotes the fact that they were estimated), we a0,ˆ a and ˆ
find genes that are differentially expressed on the basis of the posterior probabilities: 

ˆ a0, ˆ a, H1) 
a0, ˆ a, ˆP (j is differentially expressed|Rj, Gj, ˆ v, ˆ p) = 

p P (Rj, Gj|ˆ v, ˆ

a0, ˆ a, ˆP (Rj, Gj|ˆ v, ˆ p) 

These posterior probabilities approapriately discount high logratios corresponding to low 
intensity measurements as such measurements are easily explained by experimental noise. 
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