
1 6.874/6.807/7.90 Computational functional genomics, lecture 7 (Jaakkola)

Expression profiles, clustering, and latent processes

If we have multiple array measurements concerning cell populations under different treat
ments relative to control, we can put together an expression profile for each gene: it’s
expression across the different treatments. Such profiles are useful in finding genes that
behave similarly across the different experiments, presumably because they participate in
the same processes that are activated (or suppressed) due to the treatments. We can also
identify treatments that lead to similar expression responses, i.e., have similar consequences
as far as transcriptional regulation is concerned.

There are many difficulties associated with this type of cluster analysis. Since biological
processes are not independent of each other, many genes participate in multiple different
processes. Each gene therefore should be assigned to multiple clusters whenever clusters
are identified with processes. We also shouldn’t necessarily expect to find gene profiles
that look the same over all the experiments. The similarities would be restricted to those
experiments that tap into the processes common to both genes. The available experiments
may exercise only a fraction of the underlying processes. Thus the profiles of two genes
might look the same because we have not carried out the experiments where they would
differ. Finally, the cell populations are not uniform but may involve different cell types.
Genes with similar aggregate profiles, averaged over the cell types, may look the same even
though they differ substantially for each cell type.

Clustering

For simplicity we will pay attention only to the logratio measurements from each array
experiment, omitting the fact that it would be better to look at the actual intensity mea
surements from the two channels (see lecture 6). Let xit denote the logexpression ratio for
gene i in experiment t. We assume that there are n experiments (on the order of tens) and
m genes (in the thousands). The available expression data can be put into a matrix form ⎤⎡

X =

⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n
⎥⎥⎥⎦· · · · · · · · · · · ·

xm1 xm2 xmn· · ·
where each row represents a gene profile and each column defines a treatment/tissue/experiment
profile. We use a special notation for gene profiles gi = [xi1, . . . , xin]T , cast here as column
vectors. Our goal here is to group together (cluster) gene profiles so as to capture genes
that participate in the same biological processes.

�

�

2 6.874/6.807/7.90 Computational functional genomics, lecture 7 (Jaakkola)

Hierarchical clustering

Perhaps the simplest approach to clustering is hierarchical agglomerative clustering. Each
profile initially represents a separate singleton cluster. The algorithm successively merges
two most similar clusters into a larger one. The resulting “clustering” is a binary tree
where each cluster appears as a node in the tree, the gene profiles lie at the bottom as
leaves, and the topmost node corresponds to a single cluster containing all the profiles.
Each nonsingleton cluster has two “children” which are the clusters that were merged to
create the larger one. Such a tree does not really cluster the data as it doesn’t commit to
any particular set of clusters (level in the tree); the task of deciding which clusters are real
is left for the user.

The hierarchical clustering algorithm depends critically on the definition of similarity or
distance between two clusters (profiles). The similarity of two clusters is typically defined on
the basis of pairwise similarities of profiles they contain; for example, as average similarity
between profiles from opposing clusters.

Gene profiles are often compared in terms of sample correlation: for any two gene profiles
gk and gl it is defined as

1 n µk) (xli − ˆ� (xki − ˆ µl)
Corr(gk, gl) =

σk σln ˆ ˆi=1

where, for example,

1 n

µ̂k = xki
n i=1

1 n

µk)
2σ2 = (xki − ˆˆk n i=1

are the sample mean and the sample variance of profile gk. We can interpret the sample
correlation as the cosine of the angle between two normalized profiles (profiles with zero
mean and unit variance). The sample correlation always lies in the interval [−1, 1]; the
correlation between any two identical profiles is 1 and the correlation between perfectly
opposing profiles (one is the negative of the other) is −1.

The sample correlation characterizes the extent to which the profiles are linearly dependent.
In other words, how well we can predict the values in one profile from the other using
least squares linear regression. Any nonlinear dependences are not manifested through
correlation. So, for example, it is possible that two profiles with zero correlation are

�

�

3 6.874/6.807/7.90 Computational functional genomics, lecture 7 (Jaakkola)

perfectly mutually predictable (one is a function of the other). On the other hand, if
the profiles have nothing to do with each other, the sample correlation will be close to
zero. It is not exactly zero because we can always find a slight linear dependence between
finite profiles (the sample correlation would vanish with increasing n if the profiles are
independent).

One advantage of the sample correlation is that it can deem similar two profiles with widely
different dynamic ranges and independent of the base level of expression. For example, a
transcription factor is typically expressed at relatively low levels, while a gene that it
regulates may be expressed at substantially higher levels. The two can end up in the same
“tight” cluster provided that the expression level of the factor is linearly related to its
ability to activate the downstream gene.

The hierarchical clustering algorithm with correlation as the similarity measure nevertheless
fails to overcome many of the difficulties discussed above. For example, only a subset of
the experiments may be relevant for specific biological processes. If we evaluate the sample
correlation based on all the available experiments, we not only loose the ability to identify
genes participating in such processes but also heavily bias the comparison towards processes
relevant to the most frequent type of experiment.

Mixture models and clustering

We can also approach clustering in a model based manner, where our assumptions about
the problem structure are more explicit. We begin by casting the clustering problem as
a problem of estimating a (simple) mixture model. Suppose we look for k underlying
(disjoint) clusters based on the gene profiles. For simplicity we assume that the profiles
within each cluster, say cluster j, can be modeled as samples from a normal distribution
specific to the cluster:

n

p(gi|µj, σj
2) = N(gi; µj, σj

2) = N(xit; µjt, σj
2)

t=1

where µj = [µj1, . . . , µjn]T represents the mean profile for the cluster and σj
2 captures the

overall deviation from the mean (same for all experiments). These simple cluster models
can be combined into an overall mixture model:

k

p(gi|θ) = pkp(gi|µj, σj
2)

j=1

where p1, . . . , pk specify the prior probabilities of each cluster (the fraction of all profiles
belonging to a particular cluster). We use θ as a shorthand for all the parameters in the

�

4 6.874/6.807/7.90 Computational functional genomics, lecture 7 (Jaakkola)

mixture model: prior probabilities p1, . . . , pk, mean profiles (vectors) µ1, . . . , µk, and the
cluster variances (one number per cluster) σ2

k.1, . . . , σ
2

The structure of this mixture model comes across clearly when we imagine drawing samples
of gene profiles. We first select a cluster according to the prior probabilities p1, . . . , pk. A
sample gene profile is subsequently drawn from the normal distribution corresponding to
the selected cluster. The same gene profile can in principle arise as a sample from two dif
ferent clusters (whose normal distributions overlap). So the cluster assignments of observed
profiles are in general somewhat uncertain and need to be carried out probabilistically (in
terms of posterior probabilities). The model nevertheless assumes that each gene belongs
to a single cluster, we are just not certain which one.

Mixture models, as before, can be estimated iteratively via the EMalgorithm. In the E
step we fix θ (the current mixture parameters) and evaluate the posterior assignments of
genes to the k possible clusters:

P (j|i) = P (j gi, θ) =
pj p(gi|µj, σj

2)
, j = 1, . . . , k, i = 1, . . . ,m |

p(gi|θ) �kwhere j=1 P (j|i) = 1 for all genes i. In the Mstep we fix the posterior assignments P (j i)|
(no longer tied to θ), and separately estimate the normal distributions associated with each
cluster from weighted gene profiles. For example, the new mean profile for cluster 1 is the
weighted mean of the gene profiles:

m
i=1 µ1t = �

P (j = 1|i) xit
, t = 1, . . . , n m

i=1 P (j = 1|i)

where the observed logratios are weighted by P (j = 1|i) (with normalization). In other
words, each cluster updates its distribution based on gene profiles in proportion to inferred
responsibility. The EMalgorithm converges to a fixed point where the cluster models
are consistent (in the sense of the derived parameter updates) with the set of genes they
are supposed to model. The solution is not unique, however. The estimation problem is
complicated by the fact that the cluster models and the posterior assignments are dependent
on each other. This dependence is manifested in the successive steps of the EM algorithm.

One unsatisfying aspect of the mixture model approach is that the choice of k or the
number of clusters has to be set in the beginning. It is certainly possible to simply run the
estimation algorithm multiple times, once for each reasonable value of k, and decide the
correct k with the help of a “model selection” criterion such as BIC (Bayesian Information
Criterion). The difficulty with this approach is that for larger values of k the estimation
problem itself becomes more prone to getting stuck in suboptimal solutions (there are more

� � �

�

5 6.874/6.807/7.90 Computational functional genomics, lecture 7 (Jaakkola)

of them). It is, however, possible to estimate mixture models without deciding a priori how
many clusters we should find (Dirichlet process mixtures).

Mixture models and partial profiles

Here we consider the more realistic case where only a subset of the experiments may
be relevant for defining a cluster. We can incorporate this into the mixture model by
modifying the normal distributions associated with each cluster. Specifically, we turn the
cluster models into mixture models in a manner that each observation (experiment) can be
either captured by a distribution specific to the cluster or by a generic distribution. More
formally:

n

p(gi|µj, σj
2) = pj0 N(xit; µjt, σj

2) + (1 − pj0) N(xit; µ0t, σ
2
0)

t=1

where N(xit; µjt, σj
2) is defined as before (cluster specific), pj0 represents the probability

that any particular experiment should be modeled by the cluster specific distribution as
opposed to a generic model (normal) model N(xit; µ0t, σ

2
0) which is the same for all clusters.

So the cluster model still relies on the underlying mean profile but it is now possible for a
gene to be considered a part of the cluster even though it deviates substantially from the
mean profile for some of the experiments.

The parameters in this refined model can be again found iteratively via the EM algorithm
(we omit the details).

Latent processes and matrix decomposition

Instead of clustering the data, we can try to uncover the latent biological processes and
relate the expression levels of individual genes to such processes. Suppose there are K
underlying processes whose activities (e.g., defined by hypothesized master regulators) are
given by {Fit}, i = 1, . . . , K, t = 1, . . . , n. In other words, Fit defines the activity of the ith

process in the tth experiment. We envision K to be much smaller than either m or n so that
we have a chance to reconstruct these activities from the available data. Now, each gene
is assigned to a subset of these processes (subset that we will optimize). So, for example,
the expression level of gene i in experiment t is modeled as

ki

xit ∼ N(µit, σ
2), where µit = θi0 + θijFIi(j),t

j=1

6 6.874/6.807/7.90 Computational functional genomics, lecture 7 (Jaakkola)

In other words, xit is normally distributed with mean that is a linear combination of the ac
tivities of those ki underlying processes that i is associated with, indexed by Ii(1), . . . , Ii(ki).
The coefficients θij define how the gene behaves in response to the processes; these coef
ficients are assumed to be the same across different experiments. The variability of the
expression measurements is σ2, which, for simplicity, is the same for all genes and experi
ments. This model involves a number of parameters (summarized below) that we have to
estimate from the available data X. ⎤⎡

F11 F12 F1n· · ·
F21 F22 F2n· · ·

Latent processes: F =
⎢⎢⎢⎣

⎥⎥⎥⎦· · · · · · · · · · · ·
FK1 FK2 FKn · · ·

Gene specific:	 ki ∈ {0, . . . , K} (number of processes i participates in)

{Ii(1), . . . , Ii(ki)} (indexes of the processes i depends on)

{θi0, . . . , θiki
} (how i depends on the latent processes)

Overall variability: σ2

In the simplest (unconstrained) case all the genes can depend on all the underlying pro
cesses. We would have m · (1 + K) + K n + 1 parameters to estimate from the data ·
matrix with m ·n entries. This unconstrained problem essentially reduces to singular value
decomposition. Omitting θi0 and σ2 for simplicity, we would try to approximate X ≈ θF
where ⎤⎡

θ11 θ12 θ1K· · ·
θ21 θ22 θ2K· · ·

θ =
⎢⎢⎢⎣

⎥⎥⎥⎦· · · · · · · · · · · ·
θm1 θm2 θmK· · ·

and the approximation is in the mean squared sense. θ and F could be found via singular
value decomposition (but are not unique).

