# **EMOTION** 9.00 John Gabrieli

# EMOTION

- A brief history
- Defining emotion
- Models of emotion
- Burning questions and tentative answers
  - Are emotions universal?
  - Do emotions have unique physiological signatures?
  - Why do we have emotions?
- Brain basis of emotions

happy, sad, angry, joyful, moping, nervous, mad, bored, irate **CONTENT**, raging, awestruck, *infatuated* Secthing, brave, timid, **Doubtful**, sorrowful, terrified, resentful, heart-broken, elated, agreeable, scared, jealous, exhausted, furious, grief-rtricken, sorrowful, captivated, disappointed, anxious, disgusted, frustrated, surprised, enthralled, depressed (550 words)

#### William James 1842 - 1910

your affectionable

This image is in the public domain.

### **Emotion is Important**

"If you can conceive of yourself... suddenly stripped of all the emotion with which our world now inspires you... no one portion of the universe would then have importance beyond another; and the whole character of its things and series of its events would be without significance, character, expression, or perspective."

#### (James, 1890)

© William James. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.





Public domain image.

### Journals and Research on Emotion:

- Cognition & Emotion
- Consciousness & Emotion
- ISRE (International Society for Research on Emotion)
- Emotion (APA journal)

### **Definition of Emotion**

**Emotions are biologically-based** responses to situations that are seen as personally relevant. They are shaped by learning, and usually involve changes in peripheral physiology, expressive behavior, and subjective experience.

## EMOTION vs. MOOD

 Mood - diffuse, long-lasting emotional states

• *Emotion* - immediate responses to a specific object or situation

# **Dimensions of Emotion**

• Arousal

high - excited, tense low - calm, lethargic

• Valence

positive - elated, contented negative - sad, gloomy



Image by MIT OpenCourseWare.

Basic affects are shown here arranged in a circle in which the vertical dimension represents degree of perceived arousal and the horizontal dimension represents degree of pleasure or displeasure.

### Who Else Has Emotions?

- Chimps?
- Dogs?
- Armadillos?

Images of animals showing emotion removed due to copyright restrictions.

### **Definition of Emotion**

**Emotions are biologically-based** responses to situations that are seen as personally relevant. They are shaped by learning, and usually involve changes in peripheral physiology, expressive behavior, and subjective experience.

### Models of Emotion





© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.



#### "We feel sorry because we cry, angry because we strike, afraid because we tremble, and not that we strike, cry, or tremble because we are sorry, angry, or fearful" William James

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

# HOW CAN PERIPHERAL BODILY EVENTS INFLUENCE EMOTIONS?

 hold pencil tightly between teeth (forces smiling expression) or between lips (prevents smiling) while watching funny movie - smiling expression led to more enjoyment

 pose facial muscles (into smile or frown) - see pictures - then report feelings - frown expression reported more anger and less happiness



Courtesy of American Psychological Association. Used with permission. Source: Soussignan, R. "Duchenne Smile, Emotional Experience, and Autonomic Reactivity: A Test of The Facial Feedback Hypothesis." *Emotion* 2, no. 1 (2002): 52-74.

#### **Facial Feedback Hypothesis**

Saussignan's (2002) experiment testing the facial feedback theory of emotion asked some subjects to hold a pencil between their teeth in such a way that their lips being pulled back like they would in a full-faced smile, and others were asked to hold a pencil between their lips in a way which prevented smiling.

Alteration of facial expression can lead to changes in the subjective experience of emotions. The person on the left (pen in mouth) is more likely to report feeling happy than the person on the right (pencil on lip).



© Paul Ekman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Video stills from a study by Ekman and his colleagues (1983). They induced a man to make a fearful expression by instructions: (a) "Raise your brows and pull them together," (b) "now raise your upper eyelids," and (c) "now stretch your lips horizontally, back toward your ears."



# HOW CAN PERIPHERAL BODILY EVENTS INFLUENCE EMOTIONS?

- perception/thought influences TYPE of emotion
- sensory feedback influences
  INTENSITY of emotion

# HOW CAN PERIPHERAL BODILY EVENTS INFLUENCE EMOTIONS?

- Schacter, 1971 injected people with adrenaline (raises heart rate, arousal) or placebo
- little effect of adrenaline (jumpy)

 emotion eliciting situation - more fear for a horror movie, more anger when insulted, more laughter for comedy with adrenaline (but not if informed about the adrenaline)

# Creaky Bridge Experiment

- Dutton & Aron
- Capilano Canyon, North Vancouver

 flimsy suspension bridge, 5 ft wide, sways & wobbles 320 ft over jagged boulders and river rapids

- upstream, steady, low, broad bridge

# Creaky Bridge Experiment

Dutton & Aron - male subjects

 in the middle of each bridge is an attractive female (confederate) asks each male subject to fill out a questionnaire, casually mentions that if subjects has more questions, he can call her at home and provides phone number

- dangerous bridge more calls
- safe bridge fewer calls

# Creaky Bridge Experiment

Dutton & Aron - male subjects

 dangerous bridge produces high arousal (increased adrenaline) interpreted as attraction (physiology interpreted as emotion of attraction)



Commons license. For more information, see http://ocw.mit.edu/fairuse.

### Three Burning Questions

- Are emotions universal (inborn)?
- Do emotions have unique physiological signatures?
- Why do we have emotions?

### **Are Emotions Universal?**



#### Charles Darwin (1809-1882)

This image is in the public domain.

### **Emotions in Animals**



This image is in the public domain.

#### **Emotions in Infants**

Images of infants showing emotion removed due to copyright restrictions.

**Early Displays of Emotion** 

Infants display emotions that are distinguishable and similar to facial displays among adults such as joy, disgust, surprise, sadness, anger, and fear.

# **Emotions in the Deaf and Blind**

Spontaneous Facial Expressions of Emotion in Athletes

- 2004 Olympics and Paralympic
  Games
- congenitally blind, noncongentially blind, sighted athletes
- analyzed expressions after winning and losing

(Matsumoto & Willingham, 2009)



Courtesy of the American Psychological Association. Used with permission.

#### Comparison of Blind and Sighted Athletes Who Just Lost a Match for a Medal



Courtesy of the American Psychological Association. Used with permission.

#### **Emotions Across Cultures**

#### "A smile means friendship to everyone?"

## Paul Ekman Cal Izard

Professor of Psychology Department of Psychiatry UCSF Medical School

Professor of Psychology University of Delaware
### **Six Basic Emotions**



Happy



Sad



© Paul Ekman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.



Surprise



Anger

# **Recognition of Emotions**

Western Non-Western

| Anger    | 79% | 62%         |
|----------|-----|-------------|
| Disgust  | 81% | <b>69</b> % |
| Fear     | 77% | 63%         |
| Нарру    | 95% | 87%         |
| Sadness  | 87% | 75%         |
| Surprise | 87% | 78%         |

Fore Tribe in New Guinea

Isolated Preliterate

Photos of tribe members showing various emotions removed due to copyright restrictions.



#### Culturally Variable (in part)

Image by MIT OpenCourseWare.

## Do Emotions Have Unique Physiological Signatures?

- Intuition holds that emotions differ from one another in their bodily manifestations (e.g., pride, disgust, anger, sadness, fear).
- Language supports this common sense idea (e.g., "She got hot and bothered," "You make my blood boil," He's just letting off steam").



Decision tree for discriminating emotions in a facial action task (Ekman et al., 1983) - this approach has failed

# Why Do We Have Emotions?

- Intrapersonal functions
  - Feeling: Affect as information
  - Behaving: Doing the right thing at the right time
- Interpersonal functions



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

An infant on the visual cliff: The infant is placed on the center board laid across a heavy sheet of glass and his mother calls to him. If she is on the "deep" side, he pats the glass but despite this tactual information that all is safe, he refuses to crawl across the apparent cliff.

### Social Referencing

Effect of Mothers' Facial Expressions on Infant Behavior

|                                                       | Study 1         |                  |
|-------------------------------------------------------|-----------------|------------------|
| Variable                                              | Joy<br>(N = 19) | Fear<br>(N = 17) |
| Percentage of infants<br>crossing deep side           | 74%             | 0                |
| Mean number of retreats per<br>minute to shallow side | .420            | 1.08             |
| Mean rating of hedonic tone                           | 1.62 .          | 2.12             |
| Mean number of references<br>per minute               | 3.60            | 2.46             |

Courtesy of American Psychological Association. Used with permission.

# Why Do We Have Emotions?

- Intrapersonal functions
  - Feeling: Affect as information
  - Behaving: Doing the right thing at the right time
- Interpersonal functions
- Do expressions have functional purposes? (Adam Anderson)

### **Expressing Fear Enhances Sensory Acquisition**



(*a*,*b*) Green arrows depict vector flow fields of skin surface deformations stemming from the antiprototype to the corresponding expression prototype, allowing visualization of the underlying facial-action patterns. Vector flow from antifear to fear (*a*) and antidisgust to disgust (*b*) indicated the opposing expansion versus compression along the longitudinal axis emanating from the bridge of the nose. This resulted in raised versus lowered brows, increased versus decreased eye aperture and vertical elongation versus compression of the nose associated with raised versus lowered lips.

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.

Fearful Expression enhances subjective visual field size (also faster eye movements)



(a) Changes in visual field estimation along horizontal, vertical and oblique axes. Central ellipse is neutral baseline. Unit markings are in 9.5° of visual angle. (b) Change in estimated visual-field size (in standardized units) for fear and disgust expressions relative to neutral expressions, averaged across visual-field location. (c) Average eye opening from participants posing disgust, neutral and fear expressions (from top to bottom row). (d) Correlation of vertical eye-size measurements of participants posing disgust and fear expressions with upper visual-field magnitude change from neutral.

Graph removed due to copyright restrictions. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.

### Fearful Expression enhances air velocity and nasal volume during inspiration

(**a**,**b**) Mean air-flow velocity (in standardized units) for fear and disgust expressions relative to neutral during inhalation over time (2.2-s inhalation; **a**) and mean volume relative to abdominal-thoracic respiratory effort (in standardized units) for disgust and fear expressions relative to neutral (**b**). Velocity was scaled such that the area under the curve for neutral sniffs was equal to 1.

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.

### Fear & The Amygdala



Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.



© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.



Image by MIT OpenCourseWare.

# Emotion: The amygdala

Un

- Anterior temp lobe/ ant. to hippocampus
- Multiple nuclei
- Widespread connections: Cortex to brainstem

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

### Selective Amygdala Lesions



### Cute and cuddly or fearsome predator?

Courtesy of American Psychological Association. Used with permission. Source: Blanchard, D., and R. J. Blanchard. "Innate and Conditioned Reactions to Threat in Rats with Amygdaloid Lesions." *Journal of Comparative and Physiological Psychology* 81, no. 2 (1972): 281-90.

## **Amygdala and Social Fitness**

Loss of threat appreciation impairs social fitness

- Dominance hierarchies
- In the lab Rosvold et al. (1954)
  - Established hierarchy
  - Lesion dominant male
  - Fall to subordinate status
- In the wild Kling et al. (1970)
  - Lesion and returned to wild
  - Social rejection
  - Early death w/out social support

## Selective amygdala lesions: Nonhuman primates

- Rhesus monkeys
- Lesioned @ 2 wks
- Returned to mothers
- Tested @ 6-8 months
- A) Loss of neophobia
- B) Loss of snake fear



B



Manual and oral exploration

А

Number per session

8

6-

4

2-

Latency to take food



Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Prather, M. D., et al. "Increased Social Fear and Decreased Fear of Objects in Monkeys with Neonatal Amygdala Lesions." *Neuroscience* 106, no. 4 (2001): 653-8.

# **Acquired Fear: Fear** Conditioning







Fish

#### Some Species That Exhibit **Fear Conditioning**

E motional memories brought about by fear-Conditioning experiments have been observed in many animal groups. It appears that once a fearful memory has been established, it is relatively permanent: changes in behavior can be brought about by controlling the fearful response rather than by eliminating the emotional memory itself. This continuity between findings in diverse

species suggests that brain pathways for this form of learning are similar. A fuller understanding of these mechanisms in animals may lead researchers to new treatments for fear disorders. such as panic attack or phobia, in humans.



Macaque



Source: LeDoux, J. "Emotion, Memory and the Brain." Scientific American 270, no. 6 (1994): 50-57. © 1994 Scientific American, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

# Fear Conditioning



Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience. Source: Medina, J., et al. "Parallels Between Cerebellum- and Amygdala-Dependant Conditioning." *Nature Reviews Neuroscience* 3, no. 2 (2002): 122-31. © 2002.



Image by MIT OpenCourseWare.

# Fear conditioning depends on amygdala

- CS & US convergence
- Lesion amygdala
  - Intact UR
  - Impair CR
- Lesion cortex
  - Intact UR & CR



**CR/UR** 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience. Source: Medina, J., et al. "Parallels Between Cerebellum- and Amygdala-Dependant Conditioning." *Nature Reviews Neuroscience* 3, no. 2 (2002): 122-31. © 2002.

### Patient S.M. - Adolphs, Damasio, Tranel et al.



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

## Fear Conditioning: Distinct roles of amygdala and hippocampus

- Amygdala lesion

   Impaired autonomic
  - Intact factual
- Hippocampal

   Intact autonomic
  - Impaired factual

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.



### **Instructed Fear**



Figure 1. Threat versus safe activation.

### Blue Square = SAFE Yellow Square = THREAT REST



Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Phelps, E., et al. "Activation of the Left Amygdala to a Cognitive Representation of Fear." *Nature Neuroscience* 4, no. 4 (2001): 437-41. © 2001.

Figure 2. Time course of amygdala activation

Timecourse of active amygdalar pixels

### Human Amygdala: Emotional Influences on Recollection



Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Cahill, L., et al. "The Amygdala and Emotional Memory." *Nature* 377, no. 6547 (1995): 295-96. © 1995.

- View story with emotional middle section
- Test recall 1-week later

### Human Amygdala: Emotional Influences on Recollection



(Urbach-Wiethe Disease)



Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Cahill, L., et al. "The Amygdala and Emotional Memory." *Nature* 377, no. 6547 (1995): 295-6. © 1995.

- View story with emotional middle section
- Test recall 1-week later
- Intact emotional reactions
- No enhanced memory

## **Six Basic Emotions**



Happy



Sad



© Paul Ekman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.



Anger

Surprise

Disgust

# Human amygdala: Impaired recognition of fear



Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.

- Intact face recognition
- Impairment selective for fear

### Subliminal Fear Faces > Subliminal Happy Faces



Left Amygdala/SI (y = 0; see Figure 3)



y = -6

Right Amygdala (y = -6; see Figure 2)



Whalen, 1998

Courtesy of The Journal of Neuroscience. Used with permission.

## **Cortical blindness: Fear blindsight**





- Does amygdala response depend on cortex?
- Examine patient w/ cortical blindness
- Examine amygdala response in the absence of cortex/awareness



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

### Morris et al., 2001

### Cortical blindness: Fear blindsight Intact/Seen Lesion/Blind



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.

• Stimuli presented to intact and blind hemifield

## **Cortical blindness: Fear blindsight**



© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>. Source: Morris, J. "Differential Extrageniculostriate and Amygdala Responses to Presentation of Emotional Faces in a Cortically Blind Field." *Brain* 124, no. 6 (2001): 1241-52.

- Amygdala discrimination of fear in blind field
- Depends on subcortical thalamo-amygdala pathway





Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience. Source: Susskind, J., et al. "Expressing Fear Enhances Sensory Acquisition." *Nature Neuroscience* 11, no. 7 (2008): 843-50. © 2008.





© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

### **Insula and Disgust**

• Lesions impair recognition of disgust facial expressions (Calder et al., 2000)

• Increased fMRI/PET activation for disgust facial expressions (Phillips et al., 1997)



Photo courtesy of Lil' Mike on Flickr used under a cc-by license.

"The horror of that moment," the King went on, "I shall never, never, forget."

"You will though," the Queen said, "if you don't make a memorandum of it."

Lewis Carroll, Through the Looking Glass, 1887


Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source: Cahill, L., et al. "Amygdala Activity at Encoding Correlated with Long-Term, Free Recall of Emotional Information." *Proc Natl Acad Sci USA* 93, no. 15 (1996): 8016–21. Copyright © 1996 National Academy of Sciences, U.S.A.

Series of images from the International Affective Picture System removed due to copyright restrictions.

## **Functional Imaging Parameters**

- 10 female subjects
- 1.5 T Scanner
- Standard motion correction
  - (Air 3.0)
- 8 slices, 7 mm thick
  - (perpendicular to hippocampal axia plane)
- Gradient echo spiral pulse sequence
  - ✓ TE=40 ms
  - ✓ TR=360 ms
  - ✓ Flip Angle= 50°
- Bite-bar to minimize motion



# Event-Related fMRI Study Design

Encoding in scanner

3 week delay

Rating (0-3) of emotional arousal of 96 color scenes (Neutral to Negative)

retrieval out of scanner

Old/New recognition judgements of 96 old & 48 new scenes Remembered Known (familiar) Forgotten

### **Emotional Experience**



### Highly Emotional Items Produced Enhanced Memory



### Enhanced Memory Associated with Left Amygdala Activation



**High Emotional Intensity** 

#### **Right Hemisphere**



NEUTRAL FILM SESSION

Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source: Cahill, L., et al. "Amygdala Activity at Encoding Correlated with Long-Term, Free Recall of Emotional Information." *Proc. Natl. Acad. Sci. USA* 93, no. 15 (1996): 8016 -21. Copyright © 1996 National Academy of Sciences, U.S.A.

### Enhanced Memory Associated with Left Amygdala Activation



**High Emotional Intensity** 

## 4 Studies

|          | Left Amygdala      |              | Right Amygdala     |               |
|----------|--------------------|--------------|--------------------|---------------|
|          | Memory Correlation |              | Memory Correlation |               |
| Authors  | Canli et al.       | Canli et al. | Cahill et al.      | Hamann et al. |
|          | 1999               | 2000         | 1996               | 1999          |
| Imaging  | fMRI (block)       | fMRI (event) | PET                | PET           |
| Subjects | 10 F               | 10 F         | 8 M                | 10 M          |
| Stimuli  | Pictures           | Pictures     | Films              | Pictures      |
| Paradigm | Recog              | Recog        | Recall             | Recall/Recog  |
| Delay    | Months             | Weeks        | Weeks              | Minutes/Weeks |

## Is Gender the Critical Variable?

### Women have better memory than men

- better recall of emotional life events
- faster production of autobiographical memories to cues
- more accurate in dating memories

• wives score higher than husbands on vividness of memories for first date, last vacation, recent argument

#### Amygdala activation predicts subsequent memory for emotional experiences



The second s

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Cahill, L., et al. "Sex-Related Difference in Amygdala Activity During Emotionally Influenced Memory Storage." *Neurobiology of Learning and Memory* 75, no. 1 (2001): 1-9.

# Is Gender the Critical Variable?



## **Emotional Rating Profiles**

#### Women

### Men



## **Correlation with Emotional Ratings**



Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source: Canli, T., et al. "Sex Differences in the Neural Basis of Emotional Memories." *Proc Natl Acad Sci USA* 99, no. 16 (2002): 10789-94. Copyright © 2002 National Academy of Sciences, U.S.A.

## **Memory For Most Intense Items**



#### **Memory Correlation For Most Intense Items**



Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source: Canli, T., et al. "Sex Differences in the Neural Basis of Emotional Memories." *Proc Natl Acad Sci USA* 99, no. 16 (2002): 10789-794. Copyright © 2002 National Academy of Sciences, U.S.A.



Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source: Canli, T., et al. "Sex Differences in the Neural Basis of Emotional Memories." *Proc Natl Acad Sci USA* 99, no. 16 (2002): 10789-794. Copyright © 2002 National Academy of Sciences, U.S.A.

## Sex Differences in Amygdala Activation and Memory for Emotional Material

- superior memory for most intense pictures in women
- both men and women had greater *left* amygdala activation for pictures rated more intense
- in women, greater *left* amygadala activation predicted stronger long-term emotional memories
- in men, greater *right* amygadala activation predicted stronger long-term emotional memories

• interpretation - both men and women activate brain in response to emotional pictures, but there is, on average, a greater overlap in brain regions involved in analyzing felt emotions and in making memories in women - better memories (and greater risk for depression?) MIT OpenCourseWare http://ocw.mit.edu

9.00SC Introduction to Psychology Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.