Class details

Probability I

9.07

2/10/2004

- Reminder: HW 1 due on Friday.
- HW2 is now on the web. It's due Friday of next week.
- Readings in Probability now on the web.
- Reminder: Office hours today, 3-4 pm

Probability and gambling

- De Mere: "Which is more likely, rolling at least one 6 in 4 rolls of a single die, or rolling at least one double 6 in 24 rolls of a pair of dice?"
- De Mere reasoned they should be the same:
- Chance of one 6 in one roll $=1 / 6$
- Average number in 4 rolls $=4 \cdot(1 / 6)=2 / 3$
- Chance of one double 6 in one roll $=1 / 36$
- Average number in 24 rolls $=24 \cdot(1 / 36)=2 / 3$
- Why, then, did it seem like he lost more often with the second gamble?
- He asked his friend Pascal, and Pascal \& Fermat worked out the theory of probability.

Basic definitions

- Random experiment = observing the outcome of a chance event.
- Elementary outcome = any possible result of the random experiment $=\mathrm{O}_{\mathrm{i}}$
- Sample space $=$ the set of all elementary outcomes.

Example sample spaces

- Tossing a single coin:
$-\{\mathrm{H}, \mathrm{T}\}$
- Tossing two coins:
- \{HH, TH, HT, TT $\}$
- One roll of a single die:

Each pair is an elementary outcome.

Properties of probabilities

- $\mathrm{P}\left(\mathrm{O}_{\mathrm{i}}\right) \geq 0$
- Negative probabilities are meaningless
- The total probability of the sample space must equal 1.
- If you roll the die, one of the elementary outcomes must occur.

How do we decide what these probabilities are?

- 1. Probability = event's relative frequency in the population.
- Look at every member of the population, and record the relative frequency of each event.
Often you simply can't do this.
- 2. Estimate probability based on the relative frequency in a (large) sample.

Not perfect, but feasible.

- 3. Classical probability theory: probability based on an assumption that the game is fair.
- E.G. heads and tails equally likely.
- Similarly, might otherwise have a theoretical model for the probabilities.

Event A: Dice sum to 3

Events

- An event is a set of elementary outcomes.
- The probability of an event is the sum of the probabilities of the elementary outcomes.
- E.G. tossing a pair of dice:

Event C: White die = 1

Combining events

- E and F: both event E and event F occur
- E or F: either event E occurs, or event F does, or both
- not E: event E does not occur

Event D: Black die $=1$

C OR D: W=1 OR B=1

The addition rule

- $\mathrm{P}(\mathrm{W}=1)=6 / 36$
- $\mathrm{P}(\mathrm{B}=1)=6 / 36$
- $\mathrm{P}(\mathrm{W}=1$ or $\mathrm{B}=1) \neq \mathrm{P}(\mathrm{W}=1)+\mathrm{P}(\mathrm{B}=1)$
- $\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E}$ and F$)$

Subtract the region of overlap, so you don't count it twice.

Mutually exclusive events

- Events E and F are mutually exclusive if the two events could not have both occurred.
$-\mathrm{P}(\mathrm{E}$ and F$)=0$.
- The events have no elementary outcomes in common. (There's no overlap in our sample space diagram.)
- If E and F are mutually exclusive,
$-\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})$
- The elementary outcomes are mutually exclusive.
$-\mathrm{P}\left(\right.$ any $\left.\mathrm{O}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{O}_{1}\right)+\mathrm{P}\left(\mathrm{O}_{2}\right)+\cdots \mathrm{P}\left(\mathrm{O}_{\mathrm{N}}\right)=1$

\bullet	\bullet	\bullet	$]^{\circ}$	\bullet	${ }^{\circ}$		00			
	-	\bullet	\bigcirc		-	\bullet				
	\bullet		\bullet							
0	\bullet		\bullet		0					
	\bigcirc									
eeg	-	ber		ber		be	00			

Another example: $\mathrm{P}($ sum=7 $)=$?

$P($ sum $=7)=6 / 36$.

Another example: $\mathrm{P}(\mathrm{B}=5$ or 4$)=$?

$\mathrm{P}(\mathrm{B}=5$ or 4$)=6 / 36+6 / 36=12 / 36$.

$$
\mathrm{P}(\text { sum }=7 \text { or }(\mathrm{B}=5 \text { or } 4))=?
$$

- $\mathrm{P}($ sum $=7$ and $(\mathrm{B}=5$ or 4$))=$
$\mathrm{P}(\{2,5\},\{3,4\})=2 / 36$
- $\mathrm{P}($ sum $=7$ or $(\mathrm{B}=5$ or 4$))=$
$6 / 36+12 / 36-2 / 36=16 / 36$

De Mere revisited

- Wanted to know what is the probability of getting at least one 6 in 4 tosses of a die.
- $\mathrm{P}\left(1^{\mathrm{st}}=6\right.$ or $2^{\text {nd }}=6$ or $3^{\text {rd }}=6$ or $\left.4^{\text {th }}=6\right)$
- $\mathrm{P}\left(1^{\mathrm{st}}=6\right)=\mathrm{P}\left(2^{\mathrm{nd}}=6\right)=\mathrm{P}\left(3^{\mathrm{rd}}=6\right)=\mathrm{P}\left(4^{\mathrm{th}}=6\right)$

$$
=1 / 6
$$

- Are these events mutually exclusive?
- No, you could get a 6 on both the $1^{\text {st }} \& 2^{\text {nd }}$ tosses, for example.
- So De Mere was incorrect. $\mathrm{P} \neq 4 \cdot(1 / 6)$

The addition formula, continued

- $\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E}$ and F$)$
- You will probably rarely use this formula except for simple cases! It gets complicated quickly if you want to compute
$P(E$ or F or G or ...)
- Example:
$P($ at least one 6 in 3 tosses of a die $)=$?

3 tosses of a die

$3^{\text {rd }}=1$

$3^{\text {rd }}=4$

$$
3^{\mathrm{rd}}=5
$$

$3{ }^{\mathrm{rd}}=6$
$\mathrm{P}($ one 6 in 3 rolls $)=\mathrm{P}\left(1^{\text {st }}=6\right)+\mathrm{P}\left(2^{\text {nd }}=6\right)+\mathrm{P}\left(3^{\mathrm{rd}}=6\right)+\ldots$

$2^{\text {nd }}$ toss (B)

2 tosses of a die

3 tosses of a die

3 tosses of a die

$\mathrm{P}($ one 6 in 3 rolls $)=\ldots-\mathrm{P}\left(6\right.$ in $\left.1^{\text {st }} \& 3^{\text {rd }}\right)-\ldots$

3 tosses of a die

$P($ one 6 in 3 rolls $)=\ldots-P\left(6\right.$ in 2 nd $\left.\& 3^{\text {rd }}\right)-\ldots$

3 tosses of a die - Venn diagram

3 tosses of a die - Venn diagram

3 tosses of a die - Venn diagram

$\mathrm{P}(\mathrm{A}+\mathrm{B}+\mathrm{C})=$
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})$
$-\mathrm{P}(\mathrm{AB})-\mathrm{P}(\mathrm{AC})$
$-\mathrm{P}(\mathrm{BC}) .$.

3 tosses of a die - Venn diagram

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A}+\mathrm{B}+\mathrm{C})= \\
& \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C}) \\
& -\mathrm{P}(\mathrm{AB})-\mathrm{P}(\mathrm{AC}) \ldots
\end{aligned}
$$

3 tosses of a die - Venn diagram

[^0]
3 tosses of a die - Venn diagram

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A}+\mathrm{B}+\mathrm{C})= \\
& \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C}) \\
& -\mathrm{P}(\mathrm{AB})-\mathrm{P}(\mathrm{AC}) \\
& -\mathrm{P}(\mathrm{BC})+\mathrm{P}(\mathrm{ABC})
\end{aligned}
$$

Conditional probability

- The probability that event A will occur, given that event C has already occurred.
- $\mathrm{P}(\mathrm{A} \mid \mathrm{C})$
- $P($ dice sum to 3$)=P(\{1,2\},\{2,1\})=2 / 36$.
- Suppose we have already tossed the black die, and got a 2. Given that this has already occurred, what is the probability that the dice will sum to 3 ?

Venn diagrams, II

- Just as with sample space diagrams, lack of overlap means two events are mutually exclusive.
- Consider the event "A, but not A and B$) "=\mathrm{A}-\mathrm{AB}$.
- Are the events B, and AAB mutually exclusive?

Yes.

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{C})=\mathrm{P}(\text { sum to } 3 \mid \mathrm{B}=2)
$$

Another formula

- $\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\mathrm{P}(\mathrm{A}$ and C$) / \mathrm{P}(\mathrm{C})$
- E.G.
$P($ sum to $3 \mid B=2)=$
$\mathrm{P}(\mathrm{B}=2$ \& sum to 3$) / \mathrm{P}(\mathrm{B}=2)$

Rearranging to get the multiplication rule

- $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E}$ and F$) / \mathrm{P}(\mathrm{F})$
- Multiplication rule:
$P(E$ and $F)=P(F) P(E \mid F)$
- Another example: What is the probability that the sum=6 and the white die came up a 3 ?

The formula in action

$$
\mathrm{P}(\text { sum }=6 \text { and } \mathrm{W}=3)=
$$

$$
P(\text { sum }=6) P(W=3 \mid \text { sum }=6)
$$

$P($ sum $=6)=5 / 36 . ~ P(W=3 \mid$ sum $=6)=1 / 5 . \quad P($ sum $=6 \& W=3)=1 / 36$.

Some notes

- $\mathrm{P}(\mathrm{E} \mid \mathrm{E})=\mathrm{P}(\mathrm{E}$ and E$) / \mathrm{P}(\mathrm{E})=\mathrm{P}(\mathrm{E}) / \mathrm{P}(\mathrm{E})=1$
- Once an event occurs, it's certain.
- If E and F are mutually exclusive,
$\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E}$ and F$) / \mathrm{P}(\mathrm{F})=0 / \mathrm{P}(\mathrm{F})=0$
- Once F has occurred, E is impossible, because the two are mutually exclusive.
- Swapping E \& F
$->P(F \mid E)=P(E$ and $F) / P(E)$
$\rightarrow P(F \mid E) P(E)=P(E$ and $F)=P(E \mid F) P(F)$
$->P(E) P(F \mid E)=P(F) P(E \mid F)$
- Another example: what is $\mathrm{P}(\mathrm{W}=1 \mid \mathrm{B}=1)$?

Independent events

- Two events E and F are independent if the occurrence of one has no effect on the probability of the other.
- E.G. the roll of one die has no effect on the roll of another (unless they're glued together or something).
- If E and F are independent, this is equivalent to saying that $P(E \mid F)=P(E)$, and $P(F \mid E)=P(F)$
- Special multiplication rule for independent events: $P(E$ and $F)=P(E) P(F)$

$$
\mathrm{P}(\mathrm{~W}=1 \mid \mathrm{B}=1)
$$

$\mathrm{P}(\mathrm{W}=1 \mid \mathrm{B}=1)=1 / 6=\mathrm{P}(\mathrm{W}=1)$.

A last rule (an easy one)

- $\mathrm{P}($ not E$)=1-\mathrm{P}(\mathrm{E})$
- e.g. P(failed to roll a 6)
-

$P($ roll a 6$)=1 / 6$
$P($ don't roll a 6$)=5 / 6$

Probability rules

- Addition rule:
- $\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E}$ and F$)$
- Addition rule for E \& F mutually exclusive:
- $\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})$
- Multiplication rule:
- $\mathrm{P}(\mathrm{E}$ and F$)=\mathrm{P}(\mathrm{E} \mid \mathrm{F}) \mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})$
- Multiplication rule, independent E \& F :
- $\mathrm{P}(\mathrm{E}$ and F$)=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$
- Inverse rule
- $\mathrm{P}($ not E$)=1-\mathrm{P}(\mathrm{E})$

What is the probability of getting at
 least one 6 one 4 rolls of a die?

- $\mathrm{P}($ not E$)=\mathrm{P}($ roll 4 times and don't roll a 6$)$
- $\mathrm{P}($ don't roll a 6 on one roll $)=5 / 6$
- We know rolls are independent, so $\mathrm{P}($ don't roll a 6 on any roll $)=$
$\mathrm{P}\left(\right.$ no 6 on $\left.1^{\text {st }}\right) \cdot \mathrm{P}\left(\right.$ no 6 on $\left.2^{\text {nd }}\right) \cdot$
$\mathrm{P}\left(\right.$ no 6 on $\left.3^{\text {rd }}\right) \cdot \mathrm{P}\left(\right.$ no 6 on $\left.4^{\text {th }}\right)=$
$(5 / 6)^{4}=0.482$
- $\mathrm{P}(\mathrm{E})=1-\mathrm{P}($ not E$)=1-0.482=0.518$

Now we're ready to solve De Mere's problem (the easy way)

- What is the probability of getting at least one 6 on 4 rolls of a die?
- Remember how icky the addition rule got for $\mathrm{P}(\mathrm{A}$ or B or C or D$)$? Problems like this are often easier to solve in reverse. Find the probability of the event NOT happening.
- But sometimes figuring out what the inverse is can be tricky

What is the probability of getting at least one pair of 6's on 24 rolls of a pair of dice?

- Again, solve the problem in reverse.
- $P($ not $E)=P($ no pair of 6 's on any of 24 rolls $)$
- $P($ pair of 6 's on a single roll $)=1 / 36$.
- $\mathrm{P}($ no pair of 6 's on a single roll $)=35 / 36$.
- $P($ not $E)=(35 / 36)^{24}=0.509$
- $\mathrm{P}(\mathrm{E})=1-\mathrm{P}(\operatorname{not} \mathrm{E})=1-0.509=0.491$

De Mere was right - this event is less likely to occur than rolling at least one 6 in 4 throws. (It's a pretty small difference - he must have gambled a lot and paid close attention to the results!)
$\mathrm{P}($ loaded dice sum to 3$)=$?
$\mathrm{P}(\{1,2,3,4,5,6\})=\{.15, .10, .25, .15, .15, .20\}$

$\mathrm{P}($ sum to 3$)=0.15 * 0.10+0.10 * 0.15=0.03$

A useful visualization

- Box diagrams:

- To get total number of possible outcomes, multiply the numbers in the 3 boxes.

Another way to solve problems with fair dice \& coins

- Probability of event made up of equally probable elementary outcomes $=(\#$ of outcomes that are part of the event)/(total number of outcomes)
- E.G. P(at least one 6 in 3 throws)
- How many total outcomes?
- How many outcomes with at least one 6 ?

Total number of outcomes in 3 throws of a die

- 6 possibilities for each throw

- Total number of outcomes from 3 throws $=$ $6 * 6 * 6=216$.

Number of outcomes including at
least one 6

- First, assume the 1 st throw is a 6 :

Only one possibility - it's a 6

These can be anything they like. 6 possibilities each.

Number of outcomes including at
 least one 6

- Next, assume the 2 nd throw is a 6 :

Another fairly easy and reliable way to solve problems like this

- Probability of event made up of equally probable elementary outcomes $=(\#$ of outcomes that are part of the event)/(total number of outcomes)
- E.G. P(at least one 6 in 3 throws)
- How many total outcomes?
$-6 * 6 * 6=216$
- How many outcomes with at least one 6 ?
$-1 * 6 * 6+5 * 1 * 6+5 * 5 * 1=36+30+25=91$
- $\mathrm{P}(\mathrm{E})=91 / 216$.

Check: do the problem the other way

- $\mathrm{P}($ no 6 in 3 throws $)=(5 / 6)^{3}$
- $\mathrm{P}($ at least one 6 in 3 throws $)=$
$1-(5 / 6)^{3}=216 / 216-125 / 216=91 / 216$
- It worked!

[^0]: $\mathrm{P}(\mathrm{A}+\mathrm{B}+\mathrm{C})=$
 $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})$
 $-P(A B)-P(A C)$
 $-P(B C)+P(A B C)$

