Correlation \& Regression, I

9.07

4/1/2004

Regression and correlation

- Involve bivariate, paired data, X \& Y
- Height \& weight measured for the same individual
- IQ \& exam scores for each individual
- Height of mother paired with height of daughter
- Sometimes more than two variables (W, X, Y, Z, ...)

Regression vs. correlation

- Regression:
- Predicting Y from X (or X from Y) by a linear rule
- Correlation:
- How good is this relationship?

Regression \& correlation

- Concerned with the questions:
- Does a statistical relationship exist between X \& Y, which allows some predictability of one of the variables from the other?
- How strong is the apparent relationship, in the sense of predictive ability?
- Can a simple linear rule be used to predict one variable from the other, and if so how good is this rule?
- E.G. $\mathrm{Y}=5 \mathrm{X}+6$

First tool: scatter plot

- For each pair of points, plot one member of a pair against the corresponding other member of that pair.
- In an experimental study, convention is to plot the independent variable on the x -axis, the dependent on the y-axis.
- Often we are describing the results of observational or "correlational" studies, in which case it doesn't matter which variable is on which axis.

Scatter plot: height vs. weight

How do we find the regression line that best fits the data?

- We don't just sketch in something that looks good
- First, recall the equation for a line.
- Next, what do we mean by "best fit"?
- Finally, based upon that definition of "best fit," find the equation of the best fit line

Straight Line

- General formula for any line is $y=b x+a$
- b is the slope of the line
- a is the intercept (i.e.,
 the value of y when $\mathrm{x}=0$)

Minimizing sum of squared errors

- We want to find the values of a and b that give us the least squared error, sse, thus this is called "least-squares" regression

For fun, we're going to derive the equations for the best-fit a and b

- But first, some preliminary work:
- Other forms of the variance
- And the definition of covariance

A different form of the variance

- Recall:
- $\operatorname{var}(\mathrm{x})=\mathrm{E}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2}$

- You may recognize this equation from the practise midterm (where it may have confused you).

The covariance

- We talked briefly about covariance a few lectures ago, when we talked about the variance of the difference of two random variables, when the random variables are not independent
- $\operatorname{var}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)=$

$$
\sigma_{1}^{2 /} \mathrm{n}_{1}+\sigma_{2}^{2} / \mathrm{n}_{2}-2 \operatorname{cov}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)
$$

The covariance

- The covariance is a measure of how the x varies with y (co-variance $=$ "varies with")
- $\operatorname{cov}(\mathrm{x}, \mathrm{y})=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]$
- $\operatorname{var}(\mathrm{x})=\operatorname{cov}(\mathrm{x}, \mathrm{x})$
- Using algebra like that from two slides ago, we get an alternate form: $\operatorname{cov}(x, y)=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]$

$$
\begin{aligned}
& =E\left(x y-x \mu_{y}-y \mu_{x}+\mu_{x} \mu_{y}\right) \\
& =E(x y)-\mu_{x} \mu_{y}-\mu_{x} \mu_{y}+\mu_{x} \mu_{y} \\
& =E(x y)-\mu_{x} \mu_{y}
\end{aligned}
$$

OK, deriving the equations for

a and b

- $y_{i}^{\prime}=a+b x_{i}$
- We want the a and b that minimize

$$
\text { sse }=\sum\left(y_{i}-y_{i}^{\prime}\right)^{2}=\sum\left(y_{i}-a-b x_{i}\right)^{2}
$$

- Recall from calculus that to minimize this equation, we need to take derivatives and set them to zero.

Derivative with respect to a

$\frac{\partial}{\partial a}\left(\sum\left(y_{i}-a-b x_{i}\right)^{2}\right)=-2 \sum\left(y_{i}-a-b x_{i}\right)=0$
$\Rightarrow \sum y_{i}-a N-b \sum x_{i}=0$
$\Rightarrow a=\frac{\sum y_{i}}{N}-b \frac{\sum x_{i}}{N}$
$\Rightarrow a=\bar{y}-b \bar{x}$
This is the equation for a, however it's still in terms of b.

Derivative with respect to b

Least-squares regression equations

- $\mathrm{b}=\operatorname{cov}(\mathrm{x}, \mathrm{y}) / \mathrm{s}_{\mathrm{x}}{ }^{2}$
- $a=m_{y}-b m_{x}$
($\bar{x}=m_{x}$ Powerpoint doesn't make it easy to create a bar over a letter, so we'll go back to our old notation)
- Alternative notation:
ss $=$ "sum of squares"
let $\mathrm{ss}_{\mathrm{xx}}=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)^{2}$
$\mathrm{ss}_{\mathrm{yy}}=\Sigma\left(\mathrm{y}_{\mathrm{i}}-\mathrm{m}_{\mathrm{y}}\right)^{2}$
$\mathrm{ss}_{\mathrm{xy}}=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\mathrm{m}_{\mathrm{y}}\right)$
then $\mathrm{b}=\mathrm{ss}_{\mathrm{xy}} / \mathrm{ss}_{\mathrm{xx}}$

A typical question

- Can we predict the weight of a student if we are given their height?
- We need to create a regression equation relating the outcome variable, weight, to the explanatory variable, height.
- Start with the obligatory scatterplot

Example: predicting weight from height

$x_{i} \quad y_{i}$
6084
6295
64140
66155
68119
70175
72145
74197
76150

Looks ok.

Steps for computing the regression equation

- Compute m_{x} and m_{y}
- Compute $\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)$ and $\left(\mathrm{y}_{\mathrm{i}}-\mathrm{m}_{\mathrm{y}}\right)$
- Compute $\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)^{2}$ and $\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\mathrm{m}_{\mathrm{y}}\right)$
- Compute $\mathrm{ss}_{\mathrm{xx}}$ and $\mathrm{ss}_{\mathrm{xy}}$
- $\mathrm{b}=\mathrm{SS}_{\mathrm{xy}} / \mathrm{ss}_{\mathrm{xx}}$
- $\mathrm{a}=\mathrm{m}_{\mathrm{y}}-\mathrm{bm}_{\mathrm{x}}$

Example: predicting weight from height
$\mathrm{x}_{\mathrm{i}} \quad \mathrm{y}_{\mathrm{i}}$
6084
6295
64140
66155
68119
$70 \quad 175$
72145
74197
76150
Sum=612 1260 $m_{x}=68 m_{y}=140$
$\mathrm{SS}_{x x}=240 \quad \mathrm{ss}_{y y}=10426 \quad \mathrm{SS}_{\mathrm{xy}}=1200$
$\mathrm{b}=\mathrm{ss}_{\mathrm{xy}} / \mathrm{ss}_{\mathrm{xx}}=1200 / 240=5 ; \quad \mathrm{a}=\mathrm{m}_{\mathrm{y}}-\mathrm{bm}_{\mathrm{x}}=140-5(68)=-200$

Example: predicting weight from height					
$\mathrm{x}_{\mathrm{i}} \quad \mathrm{y}_{\mathrm{i}}$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)$	$\left(y_{i}-m_{y}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)^{2}$	$\left(y_{i}-m_{y}\right)^{2}$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{m}_{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\mathrm{m}_{\mathrm{y}}\right)$
6084	-8	-56	64	3136	448
6295	-6	-45	36	2025	270
64140	-4	0	16	0	0
66155	-2	15	4	225	-30
68119	0	-21	0	441	0
70175	2	35	4	1225	70
72145	4	5	16	25	20
74197	6	57	36	3249	342
76150	8	10	64	100	80
$\begin{aligned} & \text { Sum }=612 \quad 1260 \\ & m_{x}=68 m_{y}=140 \end{aligned}$			$x=240$	$y=10426$	$\mathrm{ss}_{\mathrm{xy}}=1200$
$\mathrm{b}=\mathrm{ss}_{\mathrm{xy}} / \mathrm{ss}_{\mathrm{xx}}=12$	200/240	=	$=m_{y}-\mathrm{bm}_{x}=140-5(68)=-200$		

What weight do we predict for

 someone who is $65 "$ tall?- Weight $=-200+5 *$ height $=125 \mathrm{lbs}$

Caveats

- Outliers and influential observations can distort the equation
- Be careful with extrapolations beyond the data
- For every bivariate relationship there are two regression lines

Effect of influential observations

Extrapolation

Two regression lines

- Note that the definition of "best fit" that we used for least-squares regression was asymmetric with respect to x and y
- It cared about error in y , but not error in x .

Two regression lines

- Note that the definition of "best fit" that we used for least-squares regression was asymmetric with respect to x and y
- It cared about error in y, but not error in x.
- Essentially, we were assuming that x was known (no error), we were trying to estimate y, and our y-values had some noise in them that kept the relationship from being perfectly linear.

Two regression lines

- But, in observational or correlational studies, the assignment of, e.g., weight to the y-axis, and height to the x -axis, is arbitrary.
- We could just as easily have tried to predict height from weight.
- If we do this, in general we will get a different regression line when we predict x from y than when we predict y from x.

Swapping height and weight

height $\approx 0.11 \cdot$ weight +51.89
weight $=5 \cdot$ height -200

Residual Plots

- Plotting the residuals $\left(y_{i}-y_{i}{ }^{\prime}\right)$ against x_{i} can reveal how well the linear equation explains the data
- Can suggest that the relationship is significantly non-linear, or other oddities
- The best structure to see is no structure at all

If it looks like this, you did something wrong - there's still a linear component!

If there's a pattern, it was inappropriate to fit a line (instead of some other
function)

What to do if a linear function isn't

 appropriate- Often you can transform the data so that it is linear, and then fit the transformed data.
- This is equivalent to fitting the data with a model, $\mathrm{y}^{\prime}=\mathrm{M}(\mathrm{x})$, then plotting y vs. y^{\prime} and fitting that with a linear model.
- This is outside of the scope of this class.

Heteroscedastic data

- Data for which the amount of scatter depends upon the xvalue (vs. "homoscedastic", where it doesn't depend on x)
- Leads to residual plots like that on the previous slide
- Happens a lot in behavioral research because of Weber's law.
- As people how much of an increment in sound volume they can just distinguish from a standard volume
How big a difference is required (and how much variability there is in the result) depends upon the standard volume
- Can often deal with this problem by transforming the data, or doing a modified, "weighted" regression
- (Again, outside of the scope of this class.)

Coming up next...

- The regression fallacy
- Assumptions implicit in regression
- Confidence intervals on the parameters of the regression line
- Confidence intervals on the predicted value y', given x
- Correlation

