Correlation & Regression, I 9.07 4/1/2004

Regression and correlation

- Involve bivariate, paired data, X & Y
 - Height & weight measured for the same individual
 - IQ & exam scores for each individual
 - Height of mother paired with height of daughter
- Sometimes more than two variables (W, X, Y, Z, ...)

Regression & correlation

- Concerned with the questions:
 - Does a statistical relationship exist between X & Y, which allows some predictability of one of the variables from the other?
 - How strong is the apparent relationship, in the sense of predictive ability?
 - Can a simple linear rule be used to predict one variable from the other, and if so how good is this rule?
 E.G. Y = 5X + 6

Regression vs. correlation

- Regression:
 - Predicting Y from X (or X from Y) by a linear rule
- Correlation:
 - How good is this relationship?

First tool: scatter plot

- For each pair of points, plot one member of a pair against the corresponding other member of that pair.
- In an experimental study, convention is to plot the independent variable on the x-axis, the dependent on the y-axis.
- Often we are describing the results of observational or "correlational" studies, in which case it doesn't matter which variable is on which axis.

2nd tool: find the regression line

- We attempt to predict the values of y from the values of x, by fitting a straight line to the data
- The data probably doesn't fit on a straight line - Scatter
 - The relationship between x & y may not quite be linear (or it could be far from linear, in which case this technique isn't appropriate)
- The regression line is like a perfect version of what the linear relationship in the data would look like

How do we find the regression line that best fits the data?

- We don't just sketch in something that looks good
- First, recall the equation for a line.
- Next, what do we mean by "best fit"?
- Finally, based upon that definition of "best fit," find the equation of the best fit line

Least-squares regression: What does "best fit" mean?

- If y_i is the true value of y paired with x_i , let $y_i' =$ our prediction of y_i from x_i
- We want to minimize the error in our prediction of y over the full range of x
- We'll do this by minimizing $sse = \sum (y_i - y_i)^2$
- Express the formula as y_i'=a+bx_i
- We want to find the values of a and b that give us the least squared error, sse, thus this is called *"least-squares" regression*

For fun, we're going to derive the equations for the best-fit a and b

- But first, some preliminary work:
 - Other forms of the variance
 - And the definition of covariance

A different form of the variance

- Recall:
- $\operatorname{var}(x) = \operatorname{E}(x \mu_x)^2$ $= \operatorname{E}(x^2 - 2x\mu_x + \mu_x^2)$ $= \operatorname{E}(x^2) - 2\mu_x^2 + \mu_x^2$ $= \operatorname{E}(x^2) - \mu_x^2$ $= \Sigma x_i^2/N - (\Sigma x_i)^2/N^2$ $= (\Sigma x_i^2 - (\Sigma x_i)^2/N) / N^*$
- You may recognize this equation from the practise midterm (where it may have confused you).

The covariance

• We talked briefly about covariance a few lectures ago, when we talked about the variance of the difference of two random variables, when the random variables are not independent

•
$$\operatorname{var}(\mathbf{m}_1 - \mathbf{m}_2) = \sigma_1^{2/n_1} + \sigma_2^{2/n_2} - 2 \operatorname{cov}(\mathbf{m}_1, \mathbf{m}_2)$$

The covariance
• The covariance is a measure of how the x varies
with y (co-variance = "varies with")
•
$$cov(x, y) = E[(x-\mu_x)(y-\mu_y)]$$

• $var(x) = cov(x, x)$
• Using algebra like that from two slides ago, we get
an alternate form:
 $cov(x, y) = E[(x-\mu_x)(y-\mu_y)]$
 $= E(xy - x\mu_y - y\mu_x + \mu_x \mu_y)$
 $= E(xy) - \mu_x \mu_y - \mu_x \mu_y + \mu_x \mu_y$
 $= E(xy) - \mu_x \mu_y$

OK, deriving the equations for a and b

- $y_i' = a + bx_i$
- We want the a and b that minimize $sse = \sum (y_i - y_i^{\,\prime})^2 = \sum (y_i - a - bx_i)^2$
- Recall from calculus that to minimize this equation, we need to take derivatives and set them to zero.

Derivative with respect to a

$$\frac{\partial}{\partial a} (\sum (y_i - a - bx_i)^2) = -2\sum (y_i - a - bx_i) = 0$$

$$\Rightarrow \sum y_i - aN - b\sum x_i = 0$$

$$\Rightarrow a = \frac{\sum y_i}{N} - b\frac{\sum x_i}{N}$$

$$\Rightarrow a = \overline{y} - b\overline{x}$$
This is the equation for a, however it's still in terms of b.

Derivative with respect to b

$$\frac{\partial}{\partial b} (\sum (y_i - a - bx_i)^2) = -2\sum (y_i - a - bx_i)x_i = 0$$

$$\Rightarrow \sum x_i y_i - \sum (\overline{y} - b\overline{x})x_i - b\sum x_i^2 = 0$$

$$\Rightarrow \frac{1}{N} \sum x_i y_i - \frac{1}{N} \overline{y} \sum x_i + \frac{b}{N} (\overline{x} \sum x_i - \sum x_i^2) = 0$$

$$\Rightarrow \frac{1}{N} \sum x_i y_i - \overline{xy} = b(\frac{1}{N} \sum x_i^2 - \overline{x}^2)$$

$$\Rightarrow b = \operatorname{cov}(x, y) / s_x^2$$

Least-squares regression equations

- $b = cov(x, y)/s_x^2$
- a = m_y b m_x
 (x̄ = m_x Powerpoint doesn't make it easy to create a bar over a letter, so we'll go back to our old notation)
- Alternative notation: ss = "sum of squares" $let ss_{xx} = \Sigma(x_i - m_x)^2$ $ss_{yy} = \Sigma(y_i - m_y)^2$ $ss_{xy} = \Sigma(x_i - m_x)(y_i - m_y)$ then b = ss_{xy} / ss_{xx}

A typical question

- Can we predict the weight of a student if we are given their height?
- We need to create a regression equation relating the *outcome* variable, weight, to the *explanatory* variable, height.
- Start with the obligatory scatterplot

Example: predicting weight from height First, plot a scatter plot, and see if the xi y_i relationship seems even remotely linear: 60 84 250 62 95 64 140 200 **(lps)** 150 100 66 155 68 119 70 175 72 145 74 197 76 150 50 70 60 65 75 height (inches) Looks ok.

Steps for computing the regression equation

- Compute m_x and m_y
- Compute $(x_i m_x)$ and $(y_i m_y)$
- Compute $(x_i m_x)^2$ and $(x_i m_x)(y_i m_y)$
- Compute ss_{xx} and ss_{xy}
- $b = ss_{xy}/ss_{xx}$
- $a=m_y bm_x$

Example: predicting weight from height									
x _i	y _i								
60	84								
62	95								
64	140								
66	155								
68	119								
70	175								
72	145								
74	197								
76	150								
Sum=612	1260		ss _{xx} =240	ss _{yy} =10426	ss _{xy} =1200				
m _x =68 m	_y =140								
$b = ss_{xy}/s$	$s_{xx} = 1$	200/240 = 5;	$a = m_y$	$a = m_y - bm_x = 140-5(68) = -200$					

Exa	amp	le: pre	dictin	g weig	ght from	height			
x _i	y _i	$(x_i - m_x)$	$(y_i - m_v)$	(x _i -m _x)	$(y_i - m_v)^2$	$(x_{i}-m_{x})(y_{i}-m_{y})$			
60	84	-8	-56	64	3136	448			
62	95	-6	-45	36	2025	270			
64	140	-4	0	16	0	0			
66	155	-2	15	4	225	-30			
68	119	0	-21	0	441	0			
70	175	2	35	4	1225	70			
72	145	4	5	16	25	20			
74	197	6	57	36	3249	342			
76	150	8	10	64	100	80			
Sum=612 m _x =68 m	1260 n _y =140		S	s _{xx} =240	ss _{yy} =10426	ss _{xy} =1200			
$b = ss_{xy}/ss_{xx} = 1200/240 = 5;$ $a = m_y - bm_x = 140-5(68) = -200$									

Two regression lines

- Note that the definition of "best fit" that we used for least-squares regression was asymmetric with respect to x and y
 - It cared about error in y, but not error in x.
 - Essentially, we were assuming that x was known (no error), we were trying to estimate y, and our y-values had some noise in them that kept the relationship from being perfectly linear.

Two regression lines

- But, in observational or correlational studies, the assignment of, e.g., weight to the y-axis, and height to the x-axis, is arbitrary.
- We could just as easily have tried to predict height from weight.
- If we do this, in general we will get a different regression line when we predict x from y than when we predict y from x.

Residual Plots

- Plotting the residuals (y_i y_i') against x_i can reveal how well the linear equation explains the data
- Can suggest that the relationship is significantly non-linear, or other oddities
- The best structure to see is no structure at all

What to do if a linear function isn't appropriate

- Often you can transform the data so that it is linear, and then fit the transformed data.
- This is equivalent to fitting the data with a model, y' = M(x), then plotting y vs. y' and fitting that with a linear model.
- This is outside of the scope of this class.

Heteroscedastic data Data for which the amount of scatter depends upon the x-value (vs. "homoscedastic", where it doesn't depend on x) Leads to residual plots like that on the previous slide Happens a lot in behavioral research because of Weber's law. As people how much of an increment in sound volume they can just distinguish from a standard volume How big a difference is required (and how much variability there is in the result) depends upon the standard volume Can often deal with this problem by transforming the data, or doing a modified, "weighted" regression (Again, outside of the scope of this class.)

Coming up next...

- The regression fallacy
- Assumptions implicit in regression
- Confidence intervals on the parameters of the regression line
- Confidence intervals on the predicted value y', given x
- Correlation