Two-way ANOVA, I
9.07

4/27/2004

No class Thursday

- Based upon how we are coming along on the material.
- You shouldn't need the next class to complete the final homework (just posted on the web)
- Don't need to know how to do post-hoc testing on twoway ANOVA
- Just read the handout on what post-hoc tests you're allowed to do (confounded vs. unconfounded comparisons)
- Turn in your Thursday HW to one of your TAs

Two-way ANOVA

- So far, we've been talking about a one-way ANOVA, with one factor (independent variable)
- But, one can have 2 or more factors
- Example: Study aids for exam - how do they affect exam performance?
- Factor 1: workbook or not
- Factor 2: 0, 1, or 2 cups of coffee

Factorial design

Note different levels of Factor A in columns, as when we did one-way ANOVA. Different levels of Factor B in rows.

Each square in the table, representing a particular combination of a level of Factor A and a level of Factor B, is called a cell.

Why do a two-factor (or multi-factor) design?

- Such a design tells us everything about an individual factor that we would learn in an experiment in which it were the only factor
- The effect of an individual factor, taken alone, on the dependent variable is called a main effect
- The design also allows us to study something that we would miss in a one-factor experiment: the interaction between the two factors
- We talked a bit about interactions when we talked about experimental design

Interactions (from an earlier lecture)

- E.G. Look at the effects of aspirin and beta carotene on preventing heart attacks
- Factors (i.e. independent variables):

1. aspirin, 2 . beta carotene

- Levels of these factors that are tested:

1. (aspirin, placebo), 2. (beta carotene, placebo)

Interactions

- An interaction is present when the effects of one independent variable on the response are different at different levels of the second independent variable.

Figure by MIT OCW.

Outcomes of a factorial design

- Main effects
- What effect does aspirin have on heart attacks,
- Does the effect of aspirin on heart attack independent of the level of beta carotene? rates depend upon the level of the beta
- What effect does beta carotene have on heart attacks, independent of the level of aspirin? carotene factor?
- Interaction(s)
- The influence that two or more independent variables have on the dependent variable, beyond their main effects
- How does beta carotene interact with aspirin, as far as preventing heart attacks?

Interactions

Why do a two-factor (or multi-factor) design?

- So, for very little extra work, one can study multiple main effects as well as interactions in a single study
- Multi-factor designs are efficient
- You will often encounter multi-factor designs in behavioral research, in part because we often have hypotheses about interactions

Between- vs. within-subjects

- As before, the factors could be between- or within-subjects factors, depending upon whether each subject contributed to one cell in the table, or a number of cells
- Also as before, we will start of talking about between-subjects experiments
- In my next lecture we will talk about withinsubjects experiments, at least for one-way ANOVAs

The plan

- Essentially, we're going to split the problem into 3 ANOVAs which look a lot like the one-way ANOVA you've already learned:
- Main effect ANOVA on factor A
- Main effect ANOVA on factor B
- Two-way interaction effect $\mathrm{A} \times \mathrm{B}$

The plan

- In each case, we will compute $\mathrm{F}_{\text {obt }}$ by computing an $\mathrm{MS}_{\mathrm{bn}}$ specific to the given effect, and dividing it by $\mathrm{MS}_{\mathrm{wn}}$
- $\mathrm{MS}_{\mathrm{wn}}$ is a measure of the "noise" - the chance variability which cannot be accounted for by any of the factors.
- We will use the same measure of $\mathrm{MS}_{\mathrm{wn}}$ for all 3 ANOVAs.

As in 1-way ANOVA, we'll be

 filling out a summary table| As in 1-way ANOVA, we'll be filling out a summary table | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source | Sum of squares | df | Mean square | $\mathrm{F}_{\text {obt }}$ | $\mathrm{F}_{\text {crit }}$ |
| Between
 Factor A
 Factor B
 Interaction
 Within
 Total | $\begin{gathered} \mathrm{SS}_{\mathrm{A}} \\ \mathrm{SS}_{\mathrm{B}} \\ \mathrm{SS}_{\mathrm{A} \times \mathrm{B}} \\ \mathrm{SS}_{\mathrm{wn}} \\ \mathrm{SS}_{\mathrm{tot}} \end{gathered}$ | df_{A}
 df_{B}
 $\mathrm{df}_{\mathrm{A} \times \mathrm{B}}$
 $\mathrm{df}_{\text {wn }}$
 $\mathrm{df}_{\text {tot }}$ | $\begin{gathered} \mathrm{MS}_{\mathrm{A}} \\ \mathrm{MS}_{\mathrm{B}} \\ \mathrm{MS}_{\mathrm{A} \times \mathrm{B}} \\ \mathrm{MS}_{\mathrm{wn}} \end{gathered}$ | $\begin{gathered} \mathrm{F}_{\mathrm{A}} \\ \mathrm{~F}_{\mathrm{B}} \\ \mathrm{~F}_{\mathrm{A} \times \mathrm{B}} \end{gathered}$ | $\begin{gathered} \mathrm{F}_{\text {crit, } \mathrm{A}} \\ \mathrm{~F}_{\text {crit, } \mathrm{B}} \\ \mathrm{~F}_{\text {crit, } \mathrm{A} \times \mathrm{B}} \end{gathered}$ |

The plan

- First, we will compute the $\mathrm{SS}_{\mathrm{bn}}$ for the two main effects, SS_{A} and SS_{B}, and their degrees of freedom, df_{A} and df_{B}
- Next, we will compute the $\mathrm{SS}_{\mathrm{bn}}$ for the interaction, $\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}$, and its degrees of freedom, $\mathrm{df}_{\mathrm{A} \times \mathrm{B}}$
- Then, we will compute $\mathrm{SS}_{\mathrm{wn}}$, and finally the F_{ob} values $\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}$, and $\mathrm{F}_{\mathrm{A} \times \mathrm{B}}$
- Compare these values with their corresponding critical values, to determine significance

The model

- Score $($ dependent variable $)=$

Grand mean +
Column effect (factor A) +
Row effect (factor B) +
Interaction effect $(\mathrm{A} \times \mathrm{B})+$
Error (noise)

Demonstrating the computations
 with an example

- Data for our coffee/workbook example (assuming a mere 3 subjects in each condition)

	Workbook (Factor A)		
		No	Yes
	0	10, 30, 20	20, 45, 55
Cups of coffee (Factor B)	1	45, 50, 85	40, 60, 65
	2	30, 40, 20	90, 85, 75

Initial calculations

- As usual, with ANOVA, we're going to want to know $\Sigma \mathrm{x}$ and $\Sigma \mathrm{x}^{2}$ for each cell, so we start off calculating those numbers

Factor A main effect

- Basically, to analyze the main effect of Factor A (the workbook), analyze the data as if you can just ignore the different levels of Factor B (the coffee)
- Analyze the columns, pretend the rows aren't there

Workbook (Factor A)		
No	Yes	
10, 30, 20	20, 45, 55	
$\Sigma \mathrm{x}=60, \mathrm{~m}=20$	$\Sigma \mathrm{x}=120, \mathrm{~m}=40$	
$\Sigma \mathrm{x}^{2}=1400$	$\Sigma \mathrm{x}^{2}=5450$	
45, 50, 85	40, 60, 65	
$\Sigma \mathrm{x}=180, \mathrm{~m}=60$	$\Sigma \mathrm{x}=165, \mathrm{~m}=55$	
$\Sigma \mathrm{x}^{2}=11750$	$\Sigma \mathrm{x}^{2}=9425$	
30, 40, 20	90, 85, 75	
$\Sigma \mathrm{x}=90, \mathrm{~m}=30$	$\Sigma \mathrm{x}=250, \mathrm{~m}=83.33$	
$\Sigma \mathrm{x}^{2}=2900$	$\Sigma \mathrm{x}^{2}=20950$	
$\Sigma \mathrm{x}=330$	$\Sigma \mathrm{x}=535$	$\Sigma \mathrm{x}=865$
$\Sigma \mathrm{x}^{2}=16050$	$\Sigma \mathrm{x}^{2}=35825$	$\Sigma \mathrm{x}^{2}=51875$
$\mathrm{n}_{\mathrm{A} 1}=9$	$\mathrm{n}_{\mathrm{A} 2}=9$	$\mathrm{N}=18$

Compute SS_{A}

- Here I'll use the computational formula in your handout - it's equivalent to the formula we used for $\mathrm{SS}_{\mathrm{bn}}$ when talking about one-way ANOVA:
$S S_{\mathrm{A}}=\Sigma\left(\frac{(\text { Sum of scores in the column })^{2}}{n \text { of scores in the column }}\right)-\left(\frac{\left(\Sigma \mathrm{X}_{\text {tot }}\right)^{2}}{N}\right)$
- $\mathrm{SS}_{\mathrm{A}}=330^{2} / 9+535^{2} / 9-865^{2} / 18=2334.72$

Compute df_{A}

- This is just like $\mathrm{df}_{\text {bn }}$ in the one-way ANOVA:
$\mathrm{df}_{\mathrm{A}}=(\#$ levels of factor A$)-1=\mathrm{k}-1=1$

Factor B main effect

- Similarly, we analyze the Factor B main effect by essentially ignoring the columns the different levels of Factor A
- Then, the calculations again look much like they did for a one-way ANOVA

Compute SS_{B}

- This is the exact same formula as the one for SS_{A}, just applied to the other factor:
$S S_{\mathrm{B}}=\Sigma\left(\frac{(\text { Sum of scores in the row })^{2}}{n \text { of scores in the row }}\right)-\left(\frac{\left(\Sigma \mathrm{X}_{\text {tot }}\right)^{2}}{N}\right)$
- $\mathrm{SS}_{\mathrm{B}}=180 / 6+345^{2} / 6+340 / 6-865^{2} / 18=$ 2936.11
- Again, this is just like $\mathrm{df}_{\text {bn }}$ in the one-way ANOVA:
$\mathrm{df}_{\mathrm{B}}=(\#$ levels of factor $B)-1=\mathrm{k}-1=2$

OK, now a trickier one: the interaction

- Differences between cells are a result of the main effects for factors A and B , and the interaction between A and B
- The overall sum of squares between cells $\left(\mathrm{SS}_{\mathrm{bn}}\right)$ equals $\mathrm{SS}_{\mathrm{A}}+\mathrm{SS}_{\mathrm{B}}+\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}$
- So, $\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}=\mathrm{SS}_{\mathrm{bn}}-\mathrm{SS}_{\mathrm{A}}-\mathrm{SS}_{\mathrm{B}}$

Computing $\mathrm{SS}_{\mathrm{bn}}$

- This is basically treating the cells like they each come from a different level of a single factor, then doing the same computation as for SS_{A} and SS_{B}

$$
S S_{\mathrm{bn}}=\Sigma\left(\frac{(\text { Sum of scores in the cell })^{2}}{n \text { of scores in the cell }}\right)-\left(\frac{\left(\Sigma \mathrm{X}_{\mathrm{tot}}\right)^{2}}{N}\right)
$$

- $\mathrm{SS}_{\mathrm{bn}}=60^{2} / 3+120^{2} / 3+180^{2} / 3+165^{2} / 3+90^{2} / 3+$

$$
250^{2} / 3-865^{2} / 18=7840.28
$$

$10,30,20$	$20,45,55$
$\Sigma \mathrm{x}=60$	$\sum \mathrm{x}=120$
$45,50,85$	$40,60,65$
$\Sigma \mathrm{x}=180$	$\sum \mathrm{x}=165$
$30,40,20$	$90,85,75$
$\Sigma \mathrm{x}=90$	$\sum \mathrm{x}=250$

Computing $\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}$

- $\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}=\mathrm{SS}_{\mathrm{bn}}-\mathrm{SS}_{\mathrm{A}}-\mathrm{SS}_{\mathrm{B}}$

$$
\begin{aligned}
& =7840.28-2334.72-2936.11 \\
& =2569.45
\end{aligned}
$$

Compute $\mathrm{df}_{\mathrm{A} \times \mathrm{B}}$

- Similar logic for $\mathrm{SS}_{\mathrm{bn}}$ gives us
$\mathrm{df}_{\mathrm{bn}}=\mathrm{df}_{\mathrm{A}}+\mathrm{df}_{\mathrm{B}}+\mathrm{df}_{\mathrm{A} \times \mathrm{B}}$
$\mathrm{df}_{\mathrm{A} \times \mathrm{B}}=\mathrm{df}_{\mathrm{bn}}-\mathrm{df}_{\mathrm{A}}+\mathrm{df}_{\mathrm{B}}$
- $\mathrm{df}_{\mathrm{bn}}=\mathrm{k}_{\mathrm{bn}}-1=\#$ cells $-1=\mathrm{k}_{\mathrm{A}} \mathrm{k}_{\mathrm{B}}-1$
- $\mathrm{df}_{\mathrm{A} \times \mathrm{B}}=\left(\mathrm{k}_{\mathrm{A}} \mathrm{k}_{\mathrm{B}}-1\right)-\left(\mathrm{k}_{\mathrm{A}}-1\right)-\left(\mathrm{k}_{\mathrm{B}}-1\right)$
$=\mathrm{k}_{\mathrm{A}}\left(\mathrm{k}_{\mathrm{B}}-1\right)-\left(\mathrm{k}_{\mathrm{B}}-1\right)$
$=\left(\mathrm{k}_{\mathrm{A}}-1\right)\left(\mathrm{k}_{\mathrm{B}}-1\right)=\mathrm{df}_{\mathrm{A}} \cdot \mathrm{df}_{\mathrm{B}}$
$=1 \cdot 2=2$

Let's see what we've got so far

Source	Sum of squares	df	Mean square	F	$\mathrm{F}_{\text {crit }}$
Between					
\quad Factor A	2334.72	1	2334.72	$\longrightarrow \mathrm{~F}_{\mathrm{A}}$	$\mathrm{F}_{\text {crit, } \mathrm{A}}$
Factor B	2936.11	2	1468.06	$\mathrm{~F}_{\mathrm{B}}$	$\mathrm{F}_{\text {crit, } \mathrm{B}}$
Interaction	2569.45	2	1284.73	$\mathrm{~F}_{\mathrm{A} \times \mathrm{B}}$	$\mathrm{F}_{\text {crit, } \mathrm{A} \times \mathrm{B}}$
Within	$\mathrm{SS}_{\mathrm{wn}}$	$\mathrm{df}_{\mathrm{wn}}$	$\mathrm{MS}_{\mathrm{wn}}$		
Total	$\mathrm{SS}_{\text {tot }}$	$\mathrm{df}_{\text {tot }}$			

Computing $\mathrm{SS}_{\text {tot }}$

- As with one-way ANOVA,

$$
S S_{t o t}=\left(\sum x^{2}\right)_{t o t}-\frac{\left(\sum x\right)_{t o t}^{2}}{N_{t o t}}, \quad \mathrm{df}=\mathrm{N}-1
$$

- We had already computed $\Sigma \mathrm{x}^{2}$ for each cell, and added them up.
- $\mathrm{SS}_{\mathrm{tot}}=51875-865^{2} / 18=10306.94$

$$
\mathrm{SS}_{\text {tot }}-510 / 3-805710-10500.94
$$

$$
\mathrm{MS}_{\mathrm{Wn}}
$$

- What we really need is $\mathrm{MS}_{\mathrm{wn}}$, the measure of the "noise", the chance variation unexplained by either of the effects or their interaction
- This can be computed directly, but as your handout suggests, it's probably easier to use:
$\mathrm{SS}_{\mathrm{wn}}=\mathrm{SS}_{\text {tot }}-\mathrm{SS}_{\mathrm{bn}}$
$\mathrm{df}_{\mathrm{wn}}=\mathrm{N}-\mathrm{k}_{\mathrm{A} \times \mathrm{B}}=\mathrm{N}-$ (number of cells)

Computing SS ${ }_{\text {wn }}$

- $\mathrm{SS}_{\mathrm{wn}}=\mathrm{SS}_{\mathrm{tot}}-\mathrm{SS}_{\mathrm{bn}}=10306.94-7840.28$
$=2466.66$

Back to the summary table

Source	Sum of squares	df	Mean square	F	$\mathrm{F}_{\text {crit }}$
Between					
\quad Factor A	2334.72	1	2334.72	$\mathrm{~F}_{\mathrm{A}}$	$\mathrm{F}_{\text {crit,A }}$
Factor B	2936.11	2	1468.06	$\mathrm{~F}_{\mathrm{B}}$	$\mathrm{F}_{\text {crit, }}$
\quad Interaction	2569.45	2	1284.73	$\mathrm{~F}_{\mathrm{A} \times \mathrm{B}}$	$\mathrm{F}_{\text {crit, } \mathrm{A} \times \mathrm{B}}$
Within	2466.66	12	$\mathrm{MS}_{\mathrm{wn}}$		
Total	10306.94	17			

Back to the summary table

Source	Sum of squares	df	Mean square	F	$\mathrm{F}_{\text {crit }}$
Between					
\quad Factor A	2334.72	1	2334.72	11.36	$\mathrm{~F}_{\text {crit, }}$
Factor B	2936.11	2	1468.06	7.14	$\mathrm{~F}_{\text {crit,B }}$
\quad Interaction	2569.45	2	1284.73	6.25	$\mathrm{~F}_{\text {crit, A×B }}$
Within	2466.66	12	205.56		
Total	10306.94	17			

Getting the $\mathrm{F}_{\text {crit }}$ values

- This is much like in one-way ANOVA
- Look up $\mathrm{F}_{\text {crit }}$ in an F-table, with df from the numerator and denominator of $\mathrm{F}_{\text {obt }}$
- $\mathrm{F}_{\text {crit }}$ for F_{A} has $\left(\mathrm{df}_{\mathrm{A}}, \mathrm{df}_{\mathrm{wn}}\right)$ degrees of freedom
- $\mathrm{F}_{\text {crit }}$ for F_{B} has $\left(\mathrm{df}_{\mathrm{B}}, \mathrm{df}_{\mathrm{wn}}\right)$ degrees of freedom
- $\mathrm{F}_{\text {crit }}$ for $\mathrm{F}_{\mathrm{A} \times \mathrm{B}}$ has $\left(\mathrm{df}_{\mathrm{A} \times \mathrm{B}}, \mathrm{df}_{\mathrm{wn}}\right)$ degrees of freedom
- Here, we will use $\alpha=0.05$

$$
\mathrm{F}_{\mathrm{obt}} \prime \text { s \& } \mathrm{F}_{\mathrm{crit}} \text { 's }
$$

- Main effect of workbook:
$-F_{A}=11.36$
$-\mathrm{F}_{0.05,1,12}=4.75 \quad$ Significant
- Main effect of coffee:
$-\mathrm{F}_{\mathrm{B}}=7.14$
$-\mathrm{F}_{0.05,2,12}=3.88 \quad$ Significant
- Interaction:
$-\mathrm{F}_{\mathrm{A} \times \mathrm{B}}=6.25$
$-\mathrm{F}_{\text {crit,2,12 }}=3.88 \quad$ Significant

Results

- Both main effects and their interaction are significant
- Use of the workbook to study for the exam had a significant effect on exam performance $(\mathrm{F}(1,12)=$ $11.36, \mathrm{p}<0.05$).
- Drinking coffee also had a significant effect on exam performance $(\mathrm{F}(2,12)=7.14, \mathrm{p}<0.05)$
- And the interaction between coffee drinking and workbook use was significant $(\mathrm{F}(2,12)=6.25, \mathrm{p}<0.05)$

Graphing the results: interaction

- Interactions are tricky - graph them to see what's going on!
- For each cell, plot the mean
- Plot the factor with more levels on the x axis, dependent variable on the y-axis
- Connect points corresponding to the same level of the other factor

Graphing the results

- Main effects are often simple enough that you can understand them without a graph (though you certainly can graph them)
- Means for factor A:
- No workbook: 36.67, Workbook: 59.44
- Means for factor B:
-0 coffee: $30, \quad 1$ cup: $57.5, \quad 2$ cups: 56.67

Why plot the factor with more levels

 on the x -axis?- This is good plotting style
- We humans are not so good at understanding plots with lots of lines in them, unless those lines are parallel or have some other simple relationship to each other
- The difference between $2 \& 3$ lines is trivial, but this becomes more important if one factor has ≥ 4 levels
- Nonetheless, it can sometimes be instructive to

Outcomes of factorial ANOVAs:
(Nearly) parallel lines indicate an
insignificant interaction

- $\mathrm{C}=$ column factor, $\mathrm{R}=$ row factor

Outcomes of factorial ANOVAs:
(Nearly) parallel lines indicate an
insignificant interaction

- $\mathrm{C}=$ column factor, $\mathrm{R}=$ row factor

C significant
R significant

Figure by MIT OCW.

Outcomes of factorial ANOVAs: non-
Outcomes of factorial ANOVAs: nonparallel lines indicate significant
interaction

C not significant

R not significant
A main effect is significant if the mean for one level of the factor is sufficiently different from the mean for another level of the factor

Figure by MIT OCW.

With more than two levels

- No interaction

- Significant interaction

When the lines cross, that's a sign you have an interaction (it may not be significant, however, so you need to check)

Interpreting the results

- If the interaction is significant, the main effects must be interpreted with care
- E.G. we do not just conclude, "look, the workbook helped", since whether or not it helped depends upon how much coffee the student drank

Summary

- We've talked about how to perform a twoway ANOVA
- And we've looked at what the graphs of the data might look like for different combinations of main effects and interactions
- Stepping back for a moment...

Complete vs. incomplete ANOVA

- Furthermore, we were assuming that the ANOVA was complete, meaning that all levels of factor A were combined with all levels of factor B
- Incomplete factorial designs require more elaborate procedures than the one we've just used

Assumptions of the two-way ANOVA

- Between-subjects: the sample in each cell (i.e. for each combination of levels of the two factors) is independent of the samples in the other cells
- The sample in each cell comes from an (approximately) normal distribution
- The populations corresponding to each cell have the same variance (homogeneous variance assumption)

What were the null hypotheses?

- Main effects:
$\mathrm{H}_{0}: \mu_{\mathrm{A} 1}=\mu_{\mathrm{A} 2}$
$\mathrm{H}_{0}: \mu_{\mathrm{B} 1}=\mu_{\mathrm{B} 2}=\mu_{\mathrm{B} 3}$
H_{a} : means not all equal
- Interaction:
H_{0} : There is no interaction effect in the population regardless of the level of, say, factor B, a change in factor A leads to the same difference in mean response
$\mu_{\mathrm{A} 1 \mathrm{~B} 1}-\mu_{\mathrm{A} 2 \mathrm{~B} 1}=\mu_{\mathrm{AlB} 2}-\mu_{\mathrm{A} 2 \mathrm{~B} 2}=\mu_{\mathrm{AlB} 3}-\mu_{\mathrm{A} 2 \mathrm{~B} 3}$
H_{a} : Not all these differences are equal

Homework comments

- Where it says "describe what the graph would look like," just plot the graph
- Where it refers to "estimating the effect sizes", what they mean is:
- Main effect: mean(level i) - (grand mean)
- Interaction: mean(cell ij) - (grand mean)
- Problem labeled " 9 " (not the $9^{\text {th }}$ problem): based on the results of the previous problem, how many post-hoc tests will you want to do? (Read the handout on confounded vs. unconfounded tests). Use this to estimate the experimentwise error rate based on the per-comparison rate.

