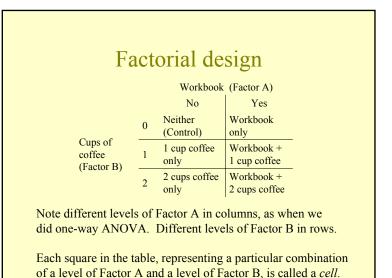


No class Thursday

- Based upon how we are coming along on the material.
- You shouldn't need the next class to complete the final homework (just posted on the web)
 - Don't need to know how to do post-hoc testing on twoway ANOVA
 - Just read the handout on what post-hoc tests you're allowed to do (confounded vs. unconfounded comparisons)
- Turn in your Thursday HW to one of your TAs

Two-way ANOVA

- So far, we've been talking about a one-way ANOVA, with one factor (independent variable)
- But, one can have 2 or more factors
- Example: Study aids for exam how do they affect exam performance?
 - Factor 1: workbook or not
 - Factor 2: 0, 1, or 2 cups of coffee



Why do a two-factor (or multi-factor) design?

- Such a design tells us everything about an individual factor that we would learn in an experiment in which it were the only factor
 - The effect of an individual factor, taken alone, on the dependent variable is called a *main effect*
- The design also allows us to study something that we would miss in a one-factor experiment: the *interaction* between the two factors
 - We talked a bit about interactions when we talked about experimental design

Interactions

• An interaction is present when the effects of one independent variable on the response are different at different levels of the second independent variable.

Interactions (from an earlier lecture)

- E.G. Look at the effects of aspirin and beta carotene on preventing heart attacks
 - Factors (i.e. independent variables):1. aspirin, 2. beta carotene
 - Levels of these factors that are tested:1. (aspirin, placebo), 2. (beta carotene, placebo)

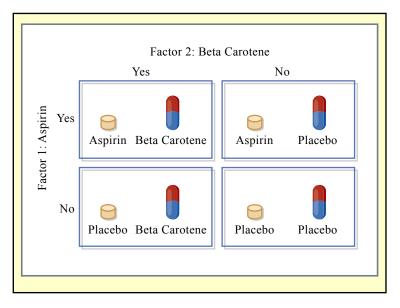
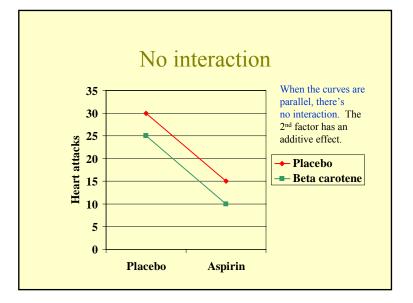


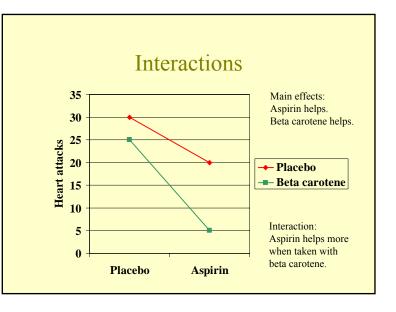
Figure by MIT OCW.

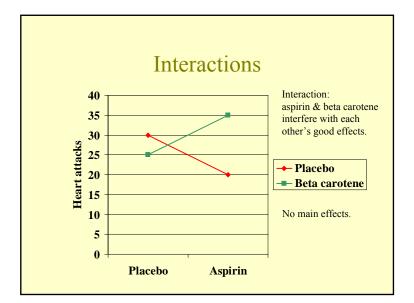
Outcomes of a factorial design

- Main effects
 - What effect does aspirin have on heart attacks, independent of the level of beta carotene?
 - What effect does beta carotene have on heart attacks, independent of the level of aspirin?
- Interaction(s)
 - The influence that two or more independent variables have on the dependent variable, beyond their main effects
 - How does beta carotene *interact* with aspirin, as far as preventing heart attacks?

• Does the effect of aspirin on heart attack rates depend upon the level of the beta carotene factor?







Why do a two-factor (or multi-factor) design?

- So, for very little extra work, one can study multiple main effects as well as interactions in a single study
 - Multi-factor designs are efficient
- You will often encounter multi-factor designs in behavioral research, in part because we often have hypotheses about interactions

Between- vs. within-subjects

- As before, the factors could be between- or within-subjects factors, depending upon whether each subject contributed to one cell in the table, or a number of cells
- Also as before, we will start of talking about between-subjects experiments
- In my next lecture we will talk about withinsubjects experiments, at least for one-way ANOVAs

The plan

- Essentially, we're going to split the problem into 3 ANOVAs which look a lot like the one-way ANOVA you've already learned:
 - Main effect ANOVA on factor A
 - Main effect ANOVA on factor B
 - Two-way interaction effect $A \times B$

The plan

- In each case, we will compute F_{obt} by computing an MS_{bn} specific to the given effect, and dividing it by MS_{wn}
- MS_{wn} is a measure of the "noise" the chance variability which cannot be accounted for by any of the factors.
- We will use the same measure of MS_{wn} for all 3 ANOVAs.

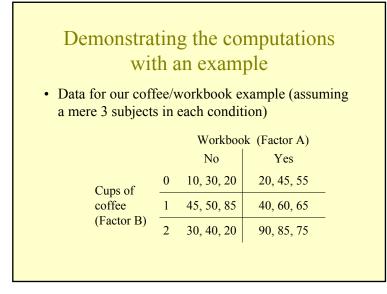
The plan

- First, we will compute the SS_{bn} for the two main effects, SS_A and SS_B , and their degrees of freedom, df_A and df_B
- Next, we will compute the SS_{bn} for the interaction, $SS_{A\times B}$, and its degrees of freedom, $df_{A\times B}$
- Then, we will compute $SS_{wn},$ and finally the F_{obt} values $F_A,\,F_B,\,\text{and}\,F_{A\times B}$
- Compare these values with their corresponding critical values, to determine significance

As in 1-way ANOVA, we'll be filling out a summary table

Source	Sum of squares	df	Mean square	F _{obt}	F _{crit}
Between					
Factor A	SS_A	df_A	MS_A	F_A	F _{crit,A}
Factor B	SS_B	df_B	MS_B	F_B	F _{crit,B}
Interaction	$SS_{A \times B}$	$df_{A \!\times\! B}$	$\text{MS}_{A \times B}$	$F_{A \times B}$	$F_{crit, A \times B}$
Within	SS_{wn}	df _{wn}	MS_{wn}		
Total	SS _{tot}	df _{tot}			

The model • Score (dependent variable) = Grand mean + Column effect (factor A) + Row effect (factor B) + Interaction effect (A×B) + Error (noise)



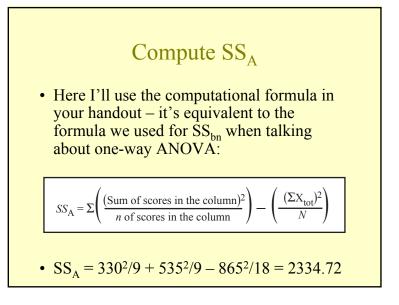
Initial calculations • As usual, with ANOVA, we're going to want to know Σx and Σx^2 for each cell, so we start off calculating those numbers

		Workbook	(Factor A)
		No	Yes
		10, 30, 20	20, 45, 55
	0	$\Sigma x = 60, m = 20$	$\Sigma x = 120, m = 40$
		$\Sigma x^2 = 1400$	$\Sigma x^2 = 5450$
Cups of coffee (Factor B)		45, 50, 85	40, 60, 65
	1	$\Sigma x = 180, m = 60$	$\Sigma x = 165, m = 55$
		$\Sigma x^2 = 11750$	$\Sigma x^2 = 9425$
,		30, 40, 20	90, 85, 75
	2	$\Sigma x = 90, m = 30$	$\Sigma x = 250, m = 83.33$
		$\Sigma x^2 = 2900$	$\Sigma x^2 = 20950$

Factor A main effect

- Basically, to analyze the main effect of Factor A (the workbook), analyze the data as if you can just ignore the different levels of Factor B (the coffee)
- Analyze the columns, pretend the rows aren't there

Workbook ((Factor A)	
No	Yes	
10, 30, 20	20, 45, 55	
$\Sigma x = 60, m = 20$	$\Sigma x = 120, m = 40$	
$\Sigma x^2 = 1400$	$\Sigma x^2 = 5450$	
45, 50, 85	40, 60, 65	
$\Sigma x = 180, m = 60$	$\Sigma x = 165, m = 55$	
$\Sigma x^2 = 11750$	$\Sigma x^2 = 9425$	
30, 40, 20	90, 85, 75	
$\Sigma x = 90, m = 30$	$\Sigma x = 250, m = 83.33$	
$\Sigma x^2 = 2900$	$\Sigma x^2 = 20950$	
$\Sigma x = 330$	$\Sigma x = 535$	$\Sigma x = 865$
$\Sigma x^2 = 16050$	$\Sigma x^2 = 35825$	$\Sigma x^2 = 51875$
n _{A1} = 9	$n_{A2} = 9$	N = 18

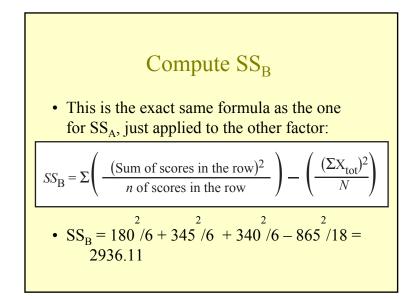


Compute df_A • This is just like df_{bn} in the one-way ANOVA: $df_A = (\# \text{ levels of factor } A) - 1 = k - 1 = 1$

Factor B main effect

- Similarly, we analyze the Factor B main effect by essentially ignoring the columns – the different levels of Factor A
- Then, the calculations again look much like they did for a one-way ANOVA

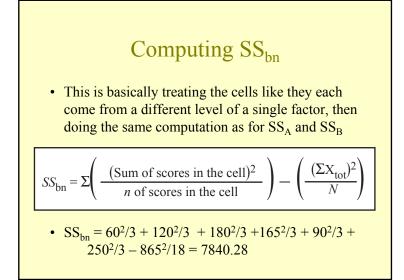
		10, 30, 20	20, 45, 55	$\Sigma x = 180$
	0	$\Sigma x = 60, m = 20$	$\Sigma x = 120, m = 40$	$n_{B1} = 6$
		$\Sigma x^2 = 1400$	$\Sigma x^2 = 5450$	u ^{BI} 0
Cups of coffee		45, 50, 85	40, 60, 65	$\Sigma x = 345$
(Factor	1	$\Sigma x = 180, m = 60$	$\Sigma x = 165, m = 55$	$n_{\rm B2} = 6$
B)	× .	$\Sigma x^2 = 11750$	$\Sigma x^2 = 9425$	$n_{B2} = 0$
,		30, 40, 20	90, 85, 75	$\Sigma_{\rm rr} = 240$
	2	$\Sigma x = 90, m = 30$	$\Sigma x = 250, m = 83.33$	$\Sigma x = 340$
		$\Sigma x^2 = 2900$	$\Sigma x^2 = 20950$	$n_{B3} = 6$
				$\Sigma x = 865$
				$\Sigma x^2 = 51875$
				N = 18



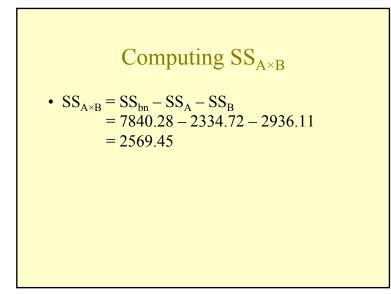
Compute df_B • Again, this is just like df_{bn} in the one-way ANOVA: $df_B = (\# \text{ levels of factor } B) - 1 = k - 1 = 2$

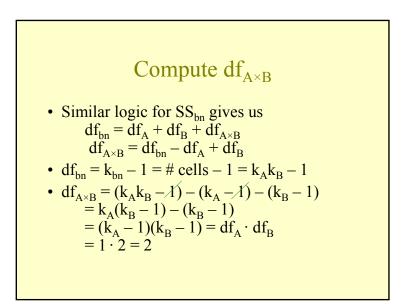
OK, now a trickier one: the interaction

- Differences between cells are a result of the main effects for factors A and B, and the interaction between A and B
- The overall sum of squares between cells (SS_{bn}) equals $SS_A + SS_B + SS_{A \times B}$
- So, $SS_{A \times B} = SS_{bn} SS_A SS_B$



	10, 30, 20	20, 45, 55	
	$\Sigma x = 60$	$\Sigma x = 120$	
-	45, 50, 85	40, 60, 65	_
_	$\Sigma x = 180$	$\Sigma x = 165$	_
	30, 40, 20	90, 85, 75	
	$\Sigma x = 90$	$\Sigma x = 250$	
		Ι	





Let's s	ee wha	t we	e've go	ot so	far
			-		
Source	Sum of squares	df	Mean square	F	F _{crit}
Between					
Factor A	2334.72	1	2334.72-	FA	F _{crit,A}
Factor B	2936.11	2	1468.06-	→ F _B	F _{crit,B}
Interaction	2569.45	2	1284.73-	$\rightarrow F_{A \times B}$	
Within	SS_{wn}	df _{wn}	MS _{wn}	J	
Total	SS _{tot}	df _{tot}			

MS_{wn}

- What we really need is MS_{wn}, the measure of the "noise", the chance variation unexplained by either of the effects or their interaction
- This can be computed directly, but as your handout suggests, it's probably easier to use:

 $SS_{wn} = SS_{tot} - SS_{bn}$ df_{wn} = N - k_{A×B} = N - (number of cells)

Computing SS_{tot}

• As with one-way ANOVA,

$$SS_{tot} = (\sum x^2)_{tot} - \frac{(\sum x)_{tot}^2}{N_{tot}}, \quad df = N - 1$$

- We had already computed Σx^2 for each cell, and added them up.
- $SS_{tot} = 51875 865^2/18 = 10306.94$

Computing SS_{wn} • $SS_{wn} = SS_{tot} - SS_{bn} = 10306.94 - 7840.28$ = 2466.66

Bacl	c to the	sun	nmary	table	e
			-		
G	Sum of	10	Mean	Б	Б
Source	squares	df squar	square	F	F _{crit}
Between					
Factor A	2334.72	1	2334.72	F _A	F _{crit,A}
Factor B	2936.11	2	1468.06	F _B	F _{crit,B}
Interaction	2569.45	2	1284.73	$F_{A \times B}$	F _{crit, A×E}
Within	2466.66	12	MS _{wn}		,
Total	10306.94	17			

Back to the summary table

Source	Sum of squares	df	Mean square	F	F _{crit}
Between					
Factor A	2334.72	1	2334.72	11.36	F _{crit,A}
Factor B	2936.11	2	1468.06	7.14	F _{crit,B}
Interaction	2569.45	2	1284.73	6.25	F _{crit, A×E}
Within	2466.66	12	205.56		
Total	10306.94	17			

Getting the F_{crit} values

- This is much like in one-way ANOVA
- Look up F_{crit} in an F-table, with df from the numerator and denominator of F_{obt}
- F_{crit} for F_A has (df_A, df_{wn}) degrees of freedom
- F_{crit} for F_B has (df_B, df_{wn}) degrees of freedom
- + F_{crit} for $F_{A \times B}$ has $(df_{A \times B}, df_{wn})$ degrees of freedom
- Here, we will use $\alpha = 0.05$

F_{obt}'s & F_{crit}'s

- Main effect of workbook:
 - $-F_{A} = 11.36$
 - $-F_{0.05,1,12} = 4.75$ Significant
- Main effect of coffee:
 - $-F_{\rm B} = 7.14$
 - $F_{0.05,2,12} = 3.88$ Significant
- Interaction:
 - $-F_{A \times B} = 6.25$
 - $F_{crit,2,12} = 3.88$ Significant

Results

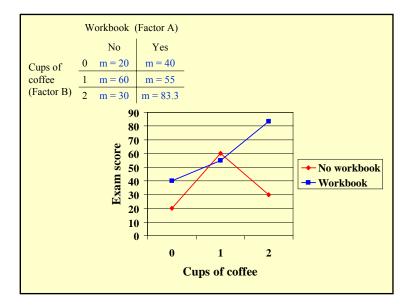
- Both main effects and their interaction are significant
 - Use of the workbook to study for the exam had a significant effect on exam performance (F(1,12) = 11.36, p<0.05).
 - Drinking coffee also had a significant effect on exam performance (F(2,12) = 7.14, p<0.05)
 - And the interaction between coffee drinking and workbook use was significant (F(2,12) = 6.25, p<0.05)

Graphing the results

- Main effects are often simple enough that you can understand them without a graph (though you certainly can graph them)
- Means for factor A:
 - No workbook: 36.67, Workbook: 59.44
- Means for factor B:
 0 coffee: 30, 1 cup: 57.5, 2 cups: 56.67

Graphing the results: interaction

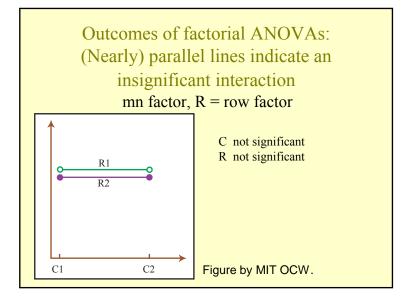
- Interactions are tricky graph them to see what's going on!
- For each cell, plot the mean
- Plot the factor with more levels on the xaxis, dependent variable on the y-axis
- Connect points corresponding to the same level of the other factor

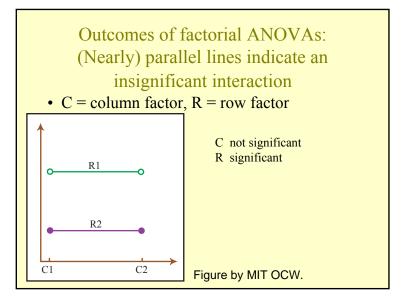


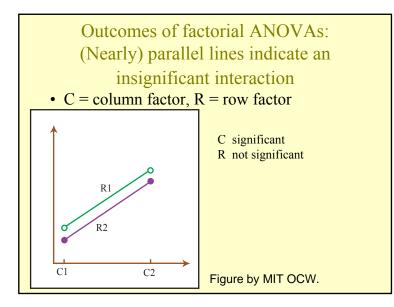
Why plot the factor with more levels on the x-axis?

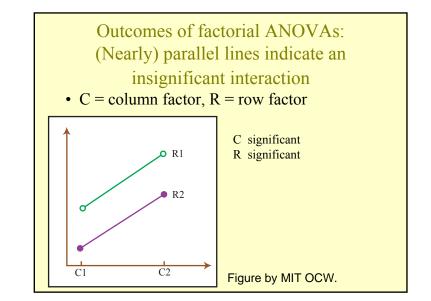
- This is good plotting style
- We humans are not so good at understanding plots with lots of lines in them, unless those lines are parallel or have some other simple relationship to each other
 - The difference between 2 & 3 lines is trivial, but this becomes more important if one factor has \geq 4 levels
- Nonetheless, it can sometimes be instructive to plot it the other way:

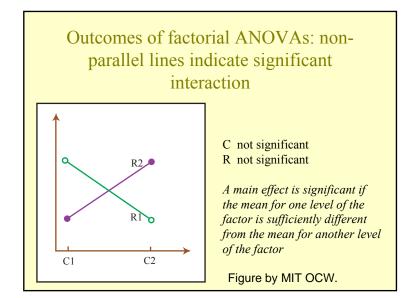


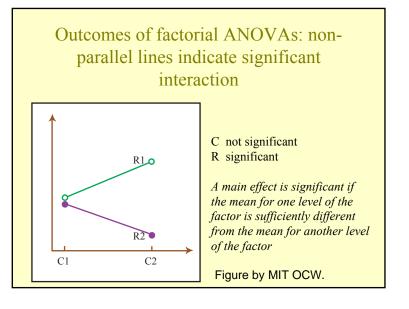


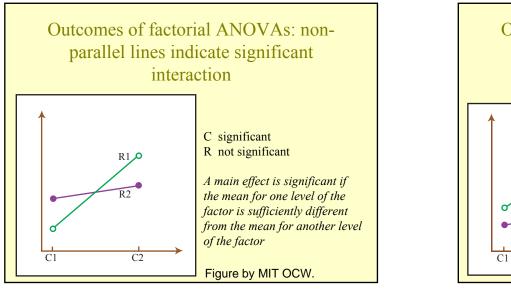


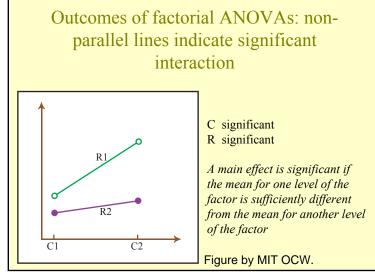


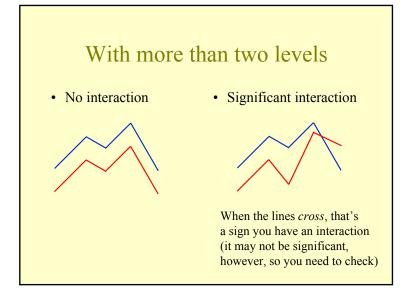












Interpreting the results

- If the interaction is significant, the main effects must be interpreted with care
- E.G. we do not just conclude, "look, the workbook helped", since whether or not it helped depends upon how much coffee the student drank

Summary

- We've talked about how to perform a twoway ANOVA
- And we've looked at what the graphs of the data might look like for different combinations of main effects and interactions
- Stepping back for a moment...

Assumptions of the two-way ANOVA

- Between-subjects: the sample in each cell (i.e. for each combination of levels of the two factors) is independent of the samples in the other cells
- The sample in each cell comes from an (approximately) normal distribution
- The populations corresponding to each cell have the same variance (homogeneous variance assumption)

Complete vs. incomplete ANOVA

- Furthermore, we were assuming that the ANOVA was *complete*, meaning that all levels of factor A were combined with all levels of factor B
 - Incomplete factorial designs require more elaborate procedures than the one we've just used

What were the null hypotheses?

- Main effects:
- Interaction:

 H_0 : There is no interaction effect in the population – regardless of the level of, say, factor B, a change in factor A leads to the same difference in mean response

 μ_{A1B1} - $\mu_{A2B1} = \mu_{A1B2}$ - $\mu_{A2B2} = \mu_{A1B3}$ - μ_{A2B3} H_a: Not all these differences are equal

Homework comments

- Where it says "describe what the graph would look like," just plot the graph
- Where it refers to "estimating the effect sizes", what they mean is:
 - Main effect: mean(level i) (grand mean)
 - Interaction: mean(cell ij) (grand mean)
- Problem labeled "9" (not the 9th problem): based on the results of the previous problem, how many post-hoc tests will you want to do? (Read the handout on confounded vs. unconfounded tests). Use this to estimate the experiment-wise error rate based on the per-comparison rate.