Histogram

If discrete or categorical, bars don't touch. If continuous, can touch, should if there are lots of bins.

Sum of bin heights $=\mathrm{N}$
102030405060
Price of last haircut (\$)

Alt: for lots of bins, continuous variable, draw histogram as a "frequency polygon"

Sum of bin heights $=1$

Price

Stem-and-Leaf Plots

- A quick way of examining the distribution of data
- Like histograms on their sides, but with more information.
- Data: 75510111010151514202520353540
- Stem-and-Leaf Plot:

0755		0557
10100554		10001455
2050	$--->$	2005
355		355
40		40

We can plot two histograms in the

 same plot, to compare them- E.G. distribution of heights for women (solid) vs. men (dashed)

Summarizing the distribution

- You might not want to look at the whole distribution in that last case. You get lots of information about the shape of the distribution, but it's kind of visually noisy.
- Summarize.
- Central tendency intuition: capture the impression that the heights for the men tend to be higher than the heights for the women.

Measures of central tendency

Data can have one or more modes

- Mode
- Where's the peak of the histogram?
- Can be used for any data, but typically only used for categorical data, where the other measures we'll discuss don't apply.

Average

- Notation: observations $\mathrm{x}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{N}}\right\}$

$$
\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{N}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- Also known as the mean. But note this is the sample mean. Soon we will talk about the population mean. Don't get confused!
- Only makes sense for interval or ratio data, but will often see it used for rank-order or rating data, too
- Unimodal vs. bimodal vs. trimodal
- Here a mode is the highest point locally

Highly skewed data

- Negative skew.
- Average not at the mode.
- Note $<50 \%$ of data is below average
- Why does the average shift to the right?

average some where around here

Figure by MIT OCW.

Average as center of mass

- The average gives the point where a histogram (if made of blocks) would balance.

Figure by MIT OCW.

What an outlier does to the mean

Another measure: the median

- Outlier shifts balance to right, average to right.

- Median = value with $1 / 2$ of the data points to the left, $1 / 2$ to the right.
- E.G.
$1,2,4.7,6,8,9.2,10 \rightarrow$ median $=6$
- E.G.

8, 15.2, 18, 19.2, 21.3, $25 \rightarrow$ median $=(18+19.2) / 2$ $=18.6$

The median is robust to outliers

When to use which measure?

- \# of hours of TV watched per week:

3, 5, 7, 7, 140

- Mean $=44.4$!
- Median $=7$.
- Mode
- Variables are categorical.
- You want a quick and easy measure for ordinal/quantitative data.
- You want to report the most common score
- Median
- Variables are measured at the ordinal level.
- Variables measured at the interval-ratio level have highly skewed distributions or lots of outliers
- You want to report the central score. The median lies at the exact center of the distribution

When to use which measure?

- Mean
- Quantitative variables (except for highly skewed distributions).
- Income distributions are highly skewed - be wary of anyone talking about the "average tax cut". They should be using the median.
- You want to report the typical score (except for highly skewed distributions). The mean is the "fulcrum that exactly balances all of the scores."
- You anticipate additional statistical analysis

Measures of spread

- Range
- Interquartile range
- Standard deviation

The notion of "spread"

- Plots look pretty different even when there's the same central tendencies.
- Also need to capture a notion of spread.

Range

- Biggest value observed - smallest value observed.
- Pretty sensitive to outliers in the tails of the distribution.

Interquartile range

- Divide data into 4 groups, see how far about the extreme groups are.

median

median=Q1 median=Q3

- Q3-Q1 = IQR.

Box-and-whiskers plot

- Draw box ends = Q1 \& Q3
- Draw median through box.
- Plot as points the outliers $=$ any points $>$ 1.5 IQR from an end of the box.
- Plot "whiskers" out to the farthest points that are not outliers.

Figure by MIT OCW.

Standard deviation

- Measures spread about average.
- Desired: How far are data points from the average, on average?
- But,

$$
\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)}{N}=\frac{\sum x_{i}}{N}-\frac{\sum \bar{x}}{N}=\bar{x}-\frac{N \bar{x}}{N}=0
$$

- Clearly, this is not going to be useful...

Try squaring the difference, before taking the average

- Sample variance $=$

$$
s^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N}=\frac{\sum x_{i}^{2}}{N}-\bar{x}^{2}
$$

But, this doesn't quite do what we want

- Wrong units
- If we were talking about height in inches, spread is now in inches ${ }^{2}$.
- If we double the distance from all points to the mean, we'd like the spread to double. Variance will go up by a factor of 4 .

Sample standard deviation

$$
s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N_{2}}}
$$

- This has the right units and right behavior.

Example

- Data: 3, 5, 7, 7, 13
- Average = 7
- Deviations:

$$
-4,-2,0,0,6
$$

- Root mean square deviation:
$\mathrm{s}=\operatorname{sqrt}((16+4+0+0+36) / 5)=3.35$

Effect of data transformations on mean and standard deviation

- Effect of adding a constant to each datum:

$3,5,5,7,9$	\rightarrow	$6,8,8,10,12$	$(+3)$
mean $=5.8$	\rightarrow	mean $=8.8$	$(+3)$
$\mathrm{s}=2.04$	\rightarrow	$\mathrm{~s}=2.04$	$($ same $)$

Effect of multiplying by a constant

$18,24,12,6$	\rightarrow	$1.5,2,1,0.5$	$(\div 12)$
mean $=15$	\rightarrow	mean $=1.25$	$(\div 12)$
$\mathrm{s}=6.71$	\rightarrow	$\mathrm{~s}=.56$	$(\div 12)$

Effect of transformation on mean and standard deviation

- Adding a constant shifts the mean by that amount, and leaves the standard deviation unchanged.
- Multiplying by a constant multiplies both the mean and standard deviation by that constant.

The z-score is robust to these changes

$z_{i}=\frac{\left(x_{i}-\bar{X}\right)}{s} \quad$ How many standard deviations above the

- $\mathrm{x}=18,24,12,6 \rightarrow \mathrm{x}=1.5,2,1,0.5$
- $\mathrm{z}=.4,1.3,-.4,-1.3 \rightarrow \mathrm{z}=.4,1.3,-.4,-1.3$
- We'll use this transformation to z a lot in this class...

Example use of z-scores

- How do you combine scores from different people?
- Mary, Jeff, and Raul see a movie.
- Their ratings of the movie, on a scale from 1 to 10 :
- Mary $=7$, Jeff $=9$, Raul $=5$
- Average score $=7$?
- It's more meaningful to see how those scores compare to how they typically rate movies.

Example use of z-scores

- Recent ratings from Mary, Jeff, \& Raul:
- Mary: 7, 8, 7, 9, 8, $9 \quad 7$ is pretty low...
- Jeff: $8,9,9,10,8,10 \quad 9$ is average. .
- Raul: $1,2,2,4,5 \quad 5$ is pretty good.
- z-scores:
- Mary: $\mathrm{m}=8, \mathrm{~s}=.8 \quad \mathrm{z}(7)=-1.2$
- Jeff: $\mathrm{m}=9 \quad \mathrm{z}(9)=0$
- Raul: $\mathrm{m}=2.8, \mathrm{~s}=1.5 \quad \mathrm{z}(5)=1.5$
- mean $(\mathrm{z})=0.1=\#$ of standard deviations above the mean
- It's probably your average movie, nothing outstanding.

Describing Distributions

- We could use more parameters to describe the distribution. E.G. skew:

- For a normal distribution only two parameters are necessary to completely specify the distribution.
- Mean (average)
- Standard deviation

Normal Distribution

Figure by MIT OCW.

Normal distribution

- If x is distributed according to a normal
- MANY of the pictures of normal distributions in your book are not normal!!! distribution with mean μ and standard
- They seem to be splines -- someone's attempt to draw a normal distribution using a graphics program.
- Normal distributions really look like the picture on the previous slide.

Note: About your book!

deviation σ, we write:

$$
\mathrm{x} \sim N(\mu, \sigma) \quad \text { or } \mathrm{x} \sim N\left(\mu, \sigma^{2}\right)
$$

- Notation:

sample (Roman)	population (Greek)
$\bar{x}, \mathrm{~s}$ or m, s	μ, σ

Some Terminology

- Density curve to describe a population
- Area under a density curve $=1$
- "Density" because the actual probability of any value is zero
- There are an infinite number of events -- the probability of any one of them is 0 .

Some things that might be normally distributed

- Heights and weights
- Arrival times to class
- Exam scores
- Gas mileage
- Sizes of anything that grows
- Number of raisins in a box of Raisin Bran
- Lots of phenomena have approx. this distribution - later we'll talk about one reason why.

Mean

- Describes the center of a normal distribution
- Because the normal distribution is symmetrical, the median and mean are equal
- Changing the mean just changes the position of the distribution, not the shape

Figure by MIT OCW.

Standard Deviation

- Describes the width (spread) of the distribution
- Can be read directly from the density curve at the inflection point (point where the curvature changes)
- Changing the standard deviation changes the width and height of a normal curve, but not the position

Figure by MIT OCW.

Figure by MIT OCW.

Figure by MIT OCW.

The normal curve approximation for data

- For many types of data, the normal curve is a good approximation to the distribution of the data.
- Use this approximation to generalize from the sample to the larger population.
- First:
- Estimate the population mean, μ, from the sample mean $\overline{\mathrm{X}}$.
- Estimate the population std. deviation, σ, from the sample standard deviation, s .

Figure by MIT OCW.

Example question you can ask

- Mean height for this class is 65.7 inches.
- Std. dev. = 3.1 inches
- Assume the broader population we're interested in is MIT students in general.
- What's the probability that a student will be taller than 68.8 inches?

Using what we know about normal distributions

- Well, $68.8^{\prime \prime}$ is one std. dev. above the mean height.

One little detail...

- s^{2} is not a good estimate for σ^{2}, for small sample size N. It is biased, i.e. it is consistently too small.
- Why: we compute $\overline{\mathrm{x}}$ and s^{2} at the same time. $\overline{\mathrm{x}}$ follows the samples around, so the deviation from \bar{x} tends to be smaller than the population σ^{2}.
- Fix: when estimating $\sigma^{2}, \quad s^{2}=\frac{(x-\bar{x})^{2}}{N-1}$

Makes it a little bigger...

