Tlx3 and *Tlx1* are post-mitotic selector genes determining glutamatergic over GABAergic cell fates

L. Cheng, A. Arata, R. Mizuguchi, Y. Qian, A. Karunaratne, P.A. Gray, S. Arata, S. Shirasawa, M. Bouchard, P. Luo, C.-L. Chen, M. Busslinger, M. Goulding, H. Onimaru, and Q. Ma

by Lena Khibnik 3/8/05

Central Questions

• Molecular specification of neurotransmitter types in different neuronal populations

• Choice of excitatory vs. inhibitory fate

• Is there a "master switch" that makes a cell fate choice?

Exctation vs. Inhibition

- Glutamate is the major excitatory neurotrasmitter
- GABA is the major inhibitory neurotransmitter
- Glu and GABA rarely coexist in one neuron

Two Puzzles:

- Glu is expressed everywhere (what is Glu?)
- GABA can be synthesized from Glu in a single step (via GAD)

A bit about the system...

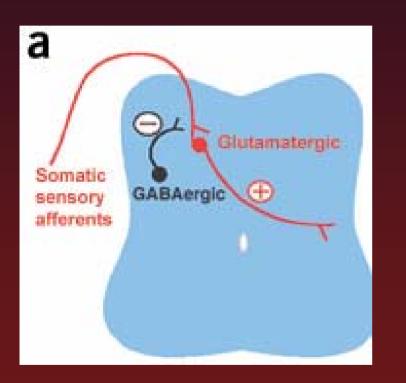

- <u>Embryonic Dorsal Spinal Cord</u>
 neurogenesis has been extensively characterized
 well characterized neuronal populations
- Existence of distinct excitatory and inhibitory pupulation
- Both types derive from a specific domain in the ventricular zone and migrate to superficial lamina in the dorsal horn

Photo removed for copyright reasons. Spinal cord cross-section, highlighting two dorsal horn regions.

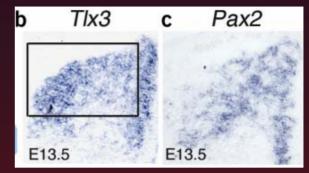
<u>Methods</u>

- Embryonic mouse and chick spinal cord
- Detection of gene and protein expression and co-localization via in situ hybridization and immuno staining techniques
- Genetic manipulation (knockouts; overexpression)
- Electrophysiology (whole cell patch)

How do you tell glutamatergic neuron from GABAergic?

- Glutamatergic neuron specific expression:
 - VLUT2 = Glu transporter

- GABAergic neuron specific expression:
 - GAD = glutamic acid decarboxylase
 - Viaat = GABA transporter

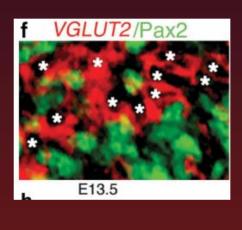

 Central question: what's the "switch" that decides cell fate for glutamatergic vs. GABAergic neurons?

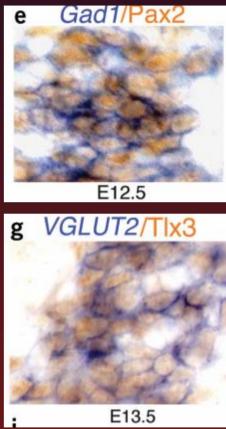
- Transcription factors are usually involved in cell fate determination
- Find two populations of neurons in which transcription factors of interest are expressed in a mutually exclusive way
- Make sure that each transcription factor of interest is exclusively expressed in a glutamatergic or GABAergic cell population

TIx3 and Pax2 genes fit the criteria

 Tlx3 and Pax2 are expressed in distinct subsets of neurons during early and late dorsal neurogenesis

 Tlx3 and Pax2 do not coexpress




d <i>Tlx</i>	(3/Pax2	h				
				Pax2⁺	VGLUT	2+ Gad1+
			Tlx3⁺	3.9%	96.4%	
52		P	ax2⁺	\	0.6%	97.8%
E1	3.5					
	Tlx3*	Pax	2+	Stmn2*		
	361 ± 23	241 ±	8	606 ± 25		
	(59.5 ± 3.0)%	(39.9 ±	1.7)9	% 10	0%	

 60% neurons in dorsal lateral spinal cord express *Tlx3* and 40% express *Pax2* (as shown by colocalization with general neuronal maker *Stmn2*)

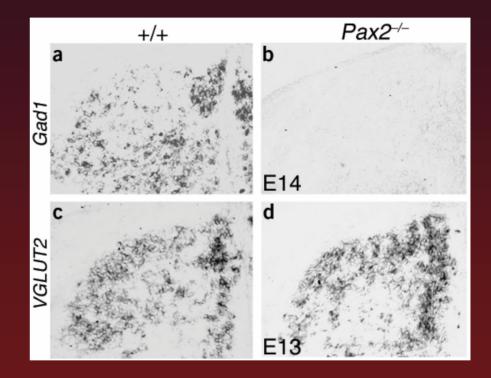
TIx3 and Pax2 genes fit the criteria

- 98% of Pax2+ cells coexpress Gad1
- 99% of Pax2+ cells DO NOT coexpress VGLUT2

 >96% of *Tlx3*+ cells coexpress *VLUT2*

TIx3 and Pax2 - summary

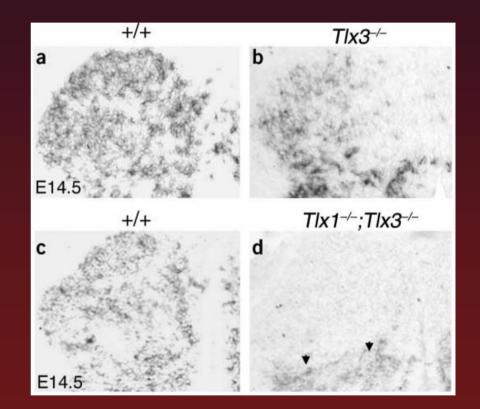
- Tlx3 and Pax2 are homeobox genes (transcription factors)
- Expressed in two distinct populations in a welldefined area of the dorsal horn
- TIx3 colocalizes exclusively with glutamatergic markers, while Pax2 colocalizes exclusively with GABAergic markers


Hypothesis: *Tlx3* and *Pax2* act as <u>selector genes</u> to promote excitatory or inhibitory cell fate * selector gene = genes that control fate and orchestrate cell type-specific choices for groups of cells during development

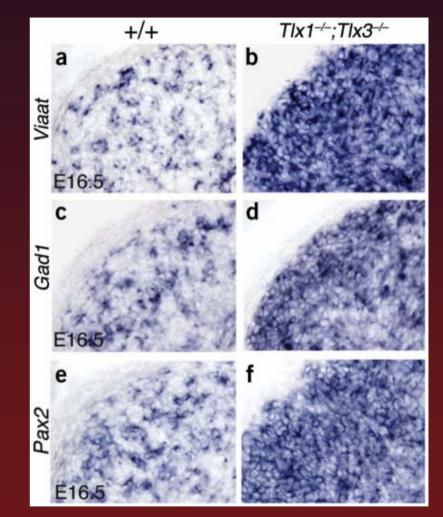
Pax2 required for GABAergic differentiation

 Pax2-null spinal cords lose Gad1 expression and have reduced Gad2/Viaat expression

 No change in VLUT2 expression in Pax2 mutants


> Pax2 is specifically required for GABAergic differentiation

Tlx expression required for glutamatergic differentiation


- *VLUT2* expression is reduced in *Tlx3* mutants
- *VLUT2* expression is ABSENT in *Tlx1/3* compound mutants

Tlx3 and Tlx1 are required for glutamatergic differentiation

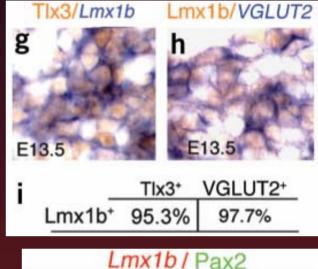
Are TIx 'selector' genes?

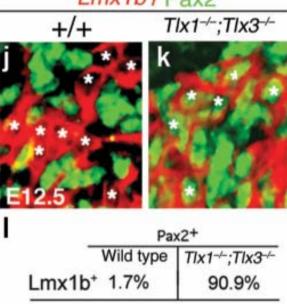
- Analysis of GABAergic markers in Tlx mutants revealed:
 - Expanded
 expression of
 Viaat, Gad1 and
 Gad2

Source: Cheng, L., et al. "TIx3 and TIx1 are Post - Mitotic Selector Genes Determining Glutamatergic Over GABAergic Cell Fates." *Nature Neuroscience* 7 (2004): 510-

517. Courtesy of the authors. Used with permission.

Mechanisms of GABAergic expansion

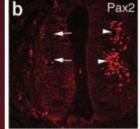

- Expansion of GABAergic population (neurogenesis)
 - Unlikely: dealing with postmitotic neurons and no increased cell death


 Transformation of glutamatergic into GABAergic cells – Tlx and Pax genes are responsible for cell fate determination

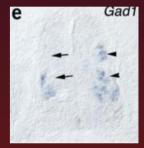
Glutamatergic cells revert to GABAergic cell

fate

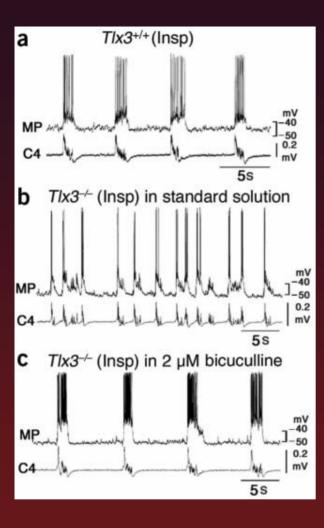

- LIM-class Hox gene Lmx1b normally coexpresses with Tlx3 and VGLUT2, but not with Pax2 (<2%)
- *Lmx1b* is still present in *Tlx* mutants (marker for Glu cells)
- In *Tlx* mutants *Pax2* and *Lmx1b*⁺ coexpressed in >90% of cells

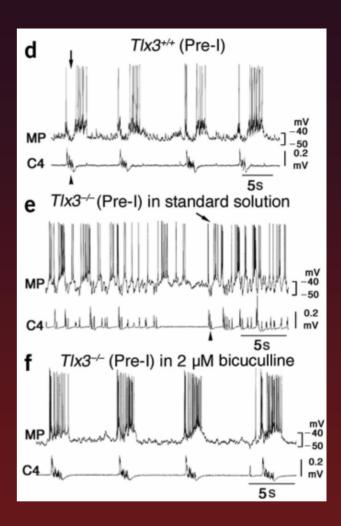


Does Tlx3 suppress GABAergic fate?


- Misexpressed mouse *TIx3* in a chick spinal cord via electroporation with a Myc-tagged mouse *TIx* expression construct
- Later analysis revealed repressed Pax2 protein expression on the electroporated side of the neural tube (along with reduced GABA and Gad1 immunostaining)
- Expansion of *VLUT2* expression

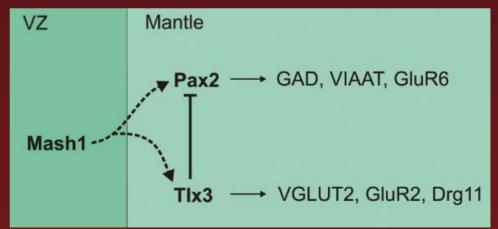
Tlx acts as a switch to activate the entire profile of cell-type specific markers


- GluR2 (encoded by *Gria2*) normally expressed in glutamatergic cells and do not colocalize with *Pax2*
- GluR6/7 (encoded by Grik2/3) are expressed in GABAergic cells and colocalize with *Pax2*
- In *Tlx* mutants, *Gria2* expression is lost, while Grik2/3 expression becomes uniform


Source: Cheng, L., et al. "TIx3 and TIx1 are Post - Mitotic Selector Genes Determining Glutamatergic Over GABAergic Cell Fates." *Nature Neuroscience* 7 (2004): 510-517. Courtesy of the authors. Used with permission.

A Functional Connection

- Do neurons transformed from glutamatergic to GABAergic exhibit true inhibitory behavior?
- Used a simple circuit (brainstem-to-spinal cord prep) to study firing properties of two interconnected oscillators involved in generation of respiratory rhythms (in a Tlx mutant has a clearly defined respiratory failure phenotype)
- Exhibit normal connectivity as indicated by normal resting membrane potential and input resistances and presumably have expansion of GABAergic cell population similar to the dorsal horn


- MP = membrane potential
- C4 = neuronal activity
- Short burst duration
- Arrhythmic firing patterns in both populations
- Normal firing is restored by application of GABA antagonist, bicuculline (also by picrotoxin and low Cl-)

- Respiratory failure results from excess GABA inhibition

To summarize...

- *Tlx3* and *Tlx1* act as selector genes, promoting glutamatergic over GABAergic differentiation in the dorsal embryonic spinal cord:
 - <u>TIx3 is expressed in Glu neurons</u> (with loss of specific Glu markers in *TIx* mutants)
 - <u>Tlx genes are able to repress GABAergic cell fate</u>, with reversible expansion of GABAergic cells in *Tlx* mutants
 - <u>Ectopic *Tlx3*</u> expression is sufficient to <u>repress endogenous</u> <u>GABAergic differentiation</u> and induce glutamatergic cell development
- Pax2 is involved in acquisition of GABAergic cell phenotype in dorsal embryonic spinal cord
 - But....loss of *Pax2* is not accompanied by expansion in glutamatergic cells
 - Pax2 probably controls the latest stages of GABAergic differentiation program

Weaknesses and Further Directions

- <u>Evidence is largely correlational</u>, direct molecular interactions are still unknown; is this regulation direct or indirect? What is the pathway of glutamatergic cell fate onset and how is the switch from glutamatergic to GABAergic cell fate accomplished?
- What induces expression of *Tlx3* and *Pax2*?

 How is glutamatergic/GABAergic cell differentiation regulated in other parts of the nervous system? Why is it advantageous to have different mechanisms in different parts of the system?