
MIT OpenCourseWare
http://ocw.mit.edu 

9.35 Sensation And Perception
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Problem Set #5 – Face Classification using Nearest‐Neighbor. 

In this problem set, we’re going to experiment with using pixel distances for 
characterizing face similarity. You’ll be using face images from the ORL 
database, which contains images of 40 individuals. 

The basic principle of nearest‐neighbor classification is to treat each image like a 
‘point’ in space, and classify new points by assigning them to the nearest labeled 
point. Each dimension of this space represents the gray‐value assigned to one 
pixel in the image. Even though we’re in many dimensions (~10,000 for these 
images) we can still calculate distance the way we do in 2‐D or 3‐D. This problem 
set asks you to write code to do this, and then examine how similarity ratings 
play out in this “pixel space.” 

1.	 Load the provided set of faces, which is in 3d (X by Y by image). Examine 
a few of the faces. You should notice that there are several deliberate 
regularities across all of the faces, for instance, posture, lighting, size… 
Knowing what you know about face recognition algorithms, and 
specifically nearest‐neighbor, why are these regularities important? What 
type of algorithm(s) might perform well without them? (15 points) 

2.	 Write a function imageDistance.m that takes two (image) matrices as 
input and returns the Euclidean distance between them (sqrt. of the sum 
of squared differences, over all the elements in the two matrices). Your 
function should be of the form d = imageDistance(im1, im2). Make sure 
your code works properly for some Pythagorean triplets 
(imageDistance([3, 0],[0, 4]) should return 5, for example). (20 points) 

3.	 Look at individual #1 and pick out the five people individuals who look 
the most like that person. Rank them according to your judgment of 
similarity. (10 points) 

4.	 Run your imageDistance function on individual #1 vs. everyone else, and 
rank all 39 other people according to this distance (the ʹsortʹ function may 
come in handy). Who are the 5 closest people (in rank order)? Comment 
on the differences (if any) between your rankings and the pixel distance 
rankings. (20 points) 

5.	 Normalize the images by subtracting the mean value from each image, 
and then dividing each image by its variance (use the var function). 



Repeating problem #4, does the order change? What do you think this 
means? Do you find one order closer to your intuitions about face 
similarity? Discuss what this may mean in terms of using pixel‐distance as 
a similarity measure for face recognition. (20 points) 

6.	 Formal classification would involve loading an independent test set, 
calculating the distance between all training images and testing images, 
and assigning to each test image the identity of the closest image in the 
training set. Based on what you have learned in the above experiments, 
comment on the strengths and weaknesses of this type of classification – 
when will it fail? When will it perform well? If an automated system was 
installed in Logan Airport to look for Osama bin Laden, assuming you 
could enforce all the regularities mentioned in Question 1, what behavior 
would you expect? (15 points) 

How many hours did you spend on this pset? Any other comments? 


