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From objects to scenes
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The context challenge

What do you think are the hidden objects? 
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Biederman et al 82; Bar & Ullman 93; Palmer, 75; 



The context challenge

What do you think are the hidden objects? 

Chance ~ 1/30000 

Answering this question does not require knowing how the objects look like. It is all about context.
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Scene categorization


Office Corridor Street 

Oliva & Torralba, IJCV’01; Torralba, Murphy, Freeman, Mark, CVPR 03.




Place identification

Office 610 Office 615


Draper street 

59 other places… 

Scenes are categories, places are instances




Supervised learning
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Supervised learning
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Which feature vector for a whole image?…





Global features (gist)

First, we propose a set of features that do not encode specific object information 

Oliva & Torralba, IJCV’01; Torralba, Murphy, Freeman, Mark, CVPR 03. 



Global features (gist)

First, we propose a set of features that do not encode specific object information 

V = {energy at each orientation and 
scale} =  6 x 4 dimensions 

80 features 

| vt | PCA 

G 

Oliva & Torralba, IJCV’01; Torralba, Murphy, Freeman, Mark, CVPR 03.




Example visual gists
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Global features (I) ~ global features (I’) 

Cf. “Pyramid Based Texture Analysis/Synthesis”, Heeger and Bergen, Siggraph, 1995 




Learning to recognize places

We use annotated sequences for training 

Office 610 Corridor 6b Corridor 6c	 Office 617 

•	 Hidden states = location (63 values) 
•	 Observations = vG

t (80 dimensions) 
•	 Transition matrix encodes topology of 

environment 
•	 Observation model is a mixture of 

Gaussians centered on prototypes (100 
views per place) 



Wearable test-bed v1




Wearable test-bed v2




Place/scene recognition demo
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Global scene features predicts 

object location


vg 

New image 

Image regions likely to 
contain the target 



Global scene features predicts 

object location


Training set (cars) 

{ Vg
1, X1 } 
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2, X2 }	 The goal of the training is to learn the 

association between the location of the 
target and the global scene features 
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Global scene features predicts 

object location
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The layered structure of scenes


p(x) p(x2|x1)


In a display with multiple targets present, the location of one target constraints the ‘y’ 
coordinate of the remaining targets, but not the ‘x’ coordinate. 



Global scene features predicts 

object location


vg X 

Stronger contextual constraints can be obtained using other objects.
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Attentional guidance 

Saliency models: Koch & Ullman, 85; Wolfe 94; Itti, Koch, Niebur, 98; Rosenholtz, 99 
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Comparison regions of interest


Torralba, 2003; Oliva, Torralba, Castelhano, Henderson. ICIP 2003
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Results

Scenes without people Scenes with people
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Task modulation
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Torralba, 2003; Oliva, Torralba, Castelhano, Henderson. ICIP 2003




Task modulation


Mug search Painting search 
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Discussion


•	 From the computational perspective, scene 
context can be derived from global image 
properties and predict where objects are most 
likely to be. 

•	 Scene context considerably improves 
predictions of fixation locations. A complete 
model of attention guidance in natural scenes 
requires both saliency and contextual pathways 


