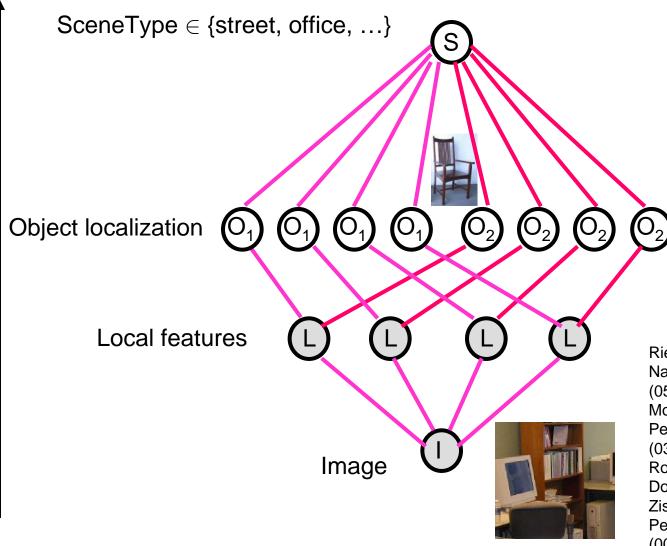
Using the Forest to see the Trees: A computational model relating features, objects and scenes

Antonio Torralba CSAIL-MIT

Joint work with

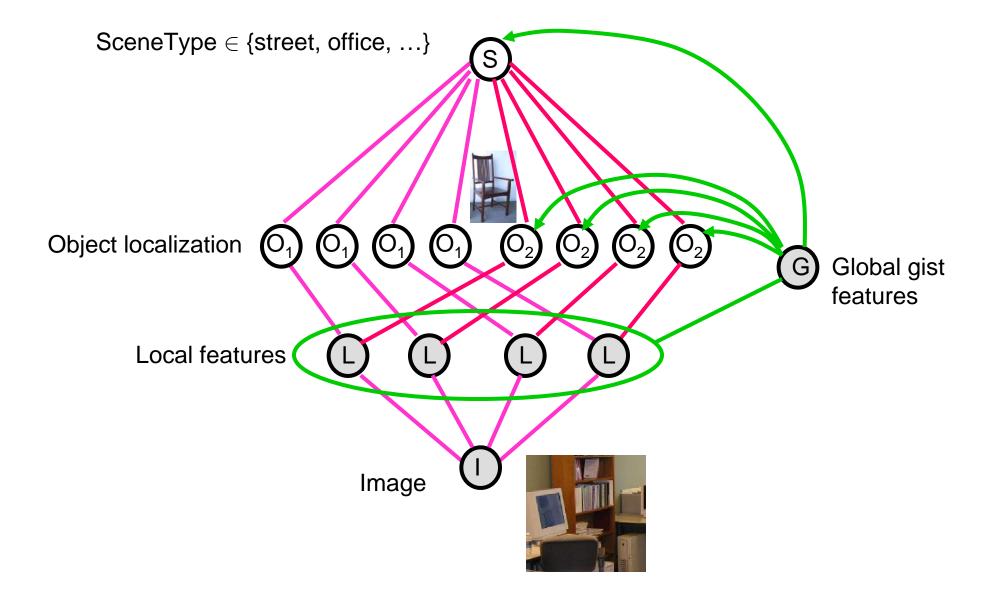
Aude Oliva, Kevin Murphy, William Freeman Monica Castelhano, John Henderson

From objects to scenes

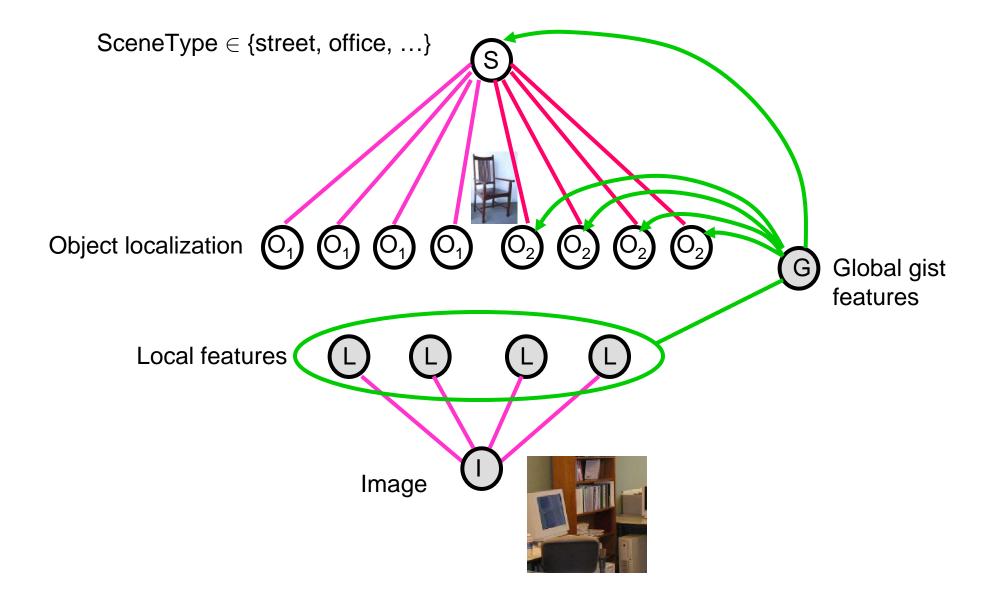


Riesenhuber & Poggio (99); Vidal-Naquet & Ullman (03); Serre & Poggio, (05); Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91), Vidal-Naquet, Ullman, (03) Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03) Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99)

From scenes to objects



From scenes to objects



The context challenge

What do you think are the hidden objects?

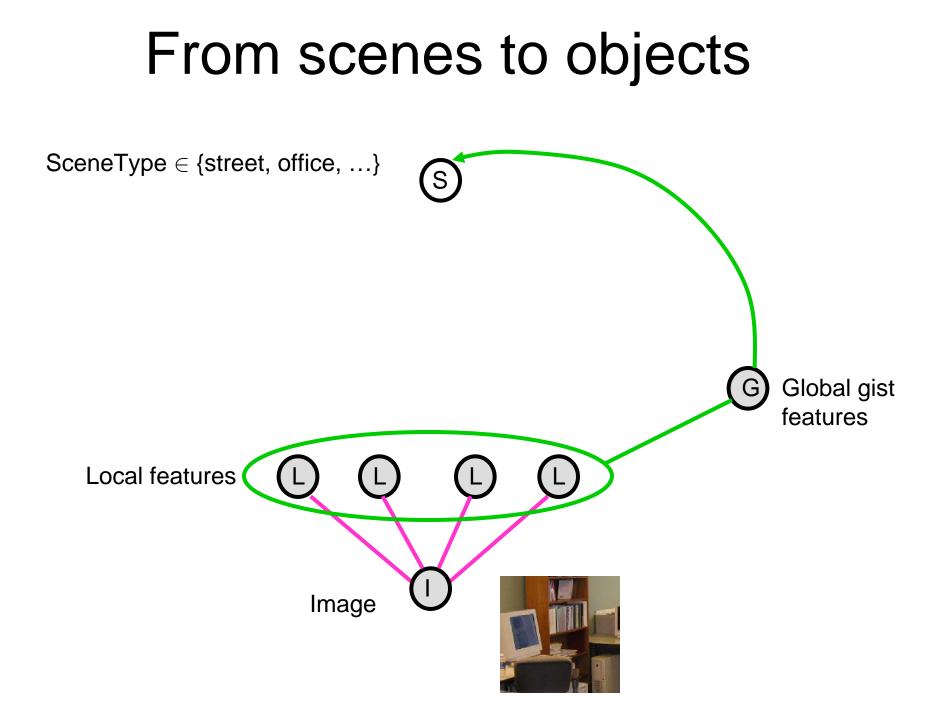
Biederman et al 82; Bar & Ullman 93; Palmer, 75;

The context challenge

What do you think are the hidden objects?

Chance ~ 1/30000

Answering this question does not require knowing how the objects look like. It is all about context.



Scene categorization

Office

Corridor

Street

Oliva & Torralba, IJCV'01; Torralba, Murphy, Freeman, Mark, CVPR 03.

Place identification

Office 610

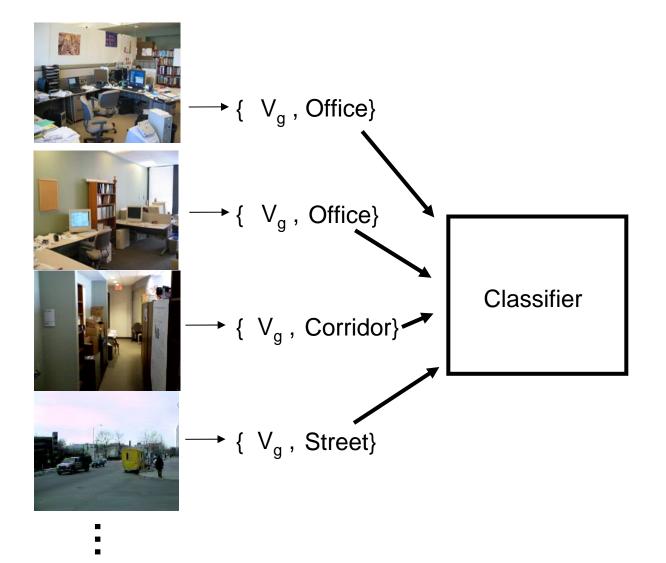
Office 615

Draper street

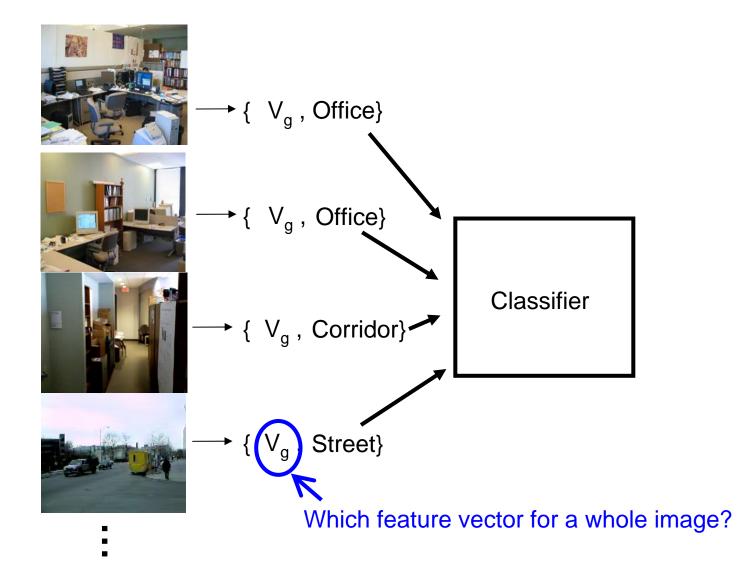
59 other places...

Scenes are categories, places are instances

Supervised learning

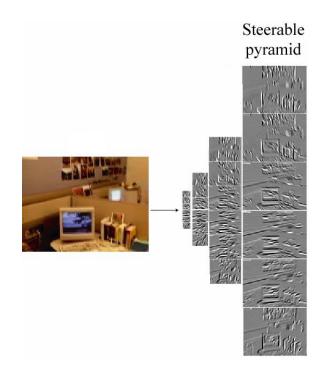


Supervised learning



Global features (gist)

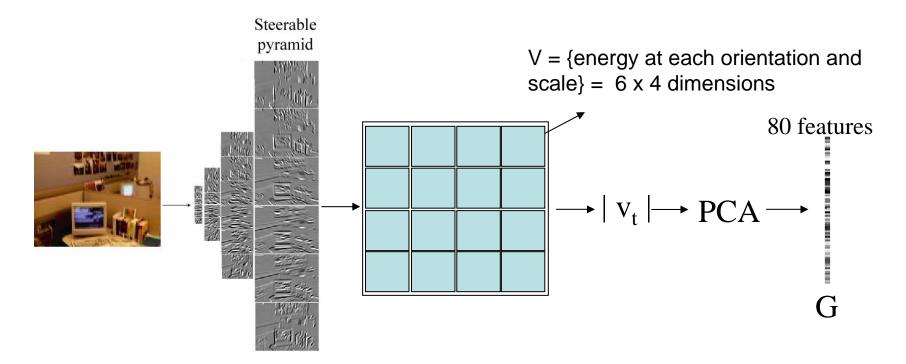
First, we propose a set of features that do not encode specific object information



Oliva & Torralba, IJCV'01; Torralba, Murphy, Freeman, Mark, CVPR 03.

Global features (gist)

First, we propose a set of features that do not encode specific object information



Oliva & Torralba, IJCV'01; Torralba, Murphy, Freeman, Mark, CVPR 03.

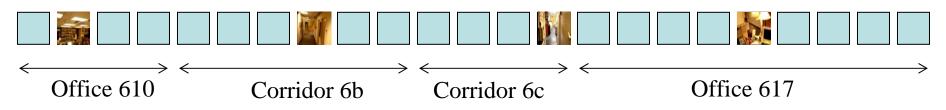
Example visual gists

Global features (I) ~ global features (I')

Cf. "Pyramid Based Texture Analysis/Synthesis", Heeger and Bergen, Siggraph, 1995

Learning to recognize places

We use annotated sequences for training

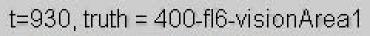


- Hidden states = location (63 values)
- Observations = v_t^G (80 dimensions)
- Transition matrix encodes topology of environment
- Observation model is a mixture of Gaussians centered on prototypes (100 views per place)

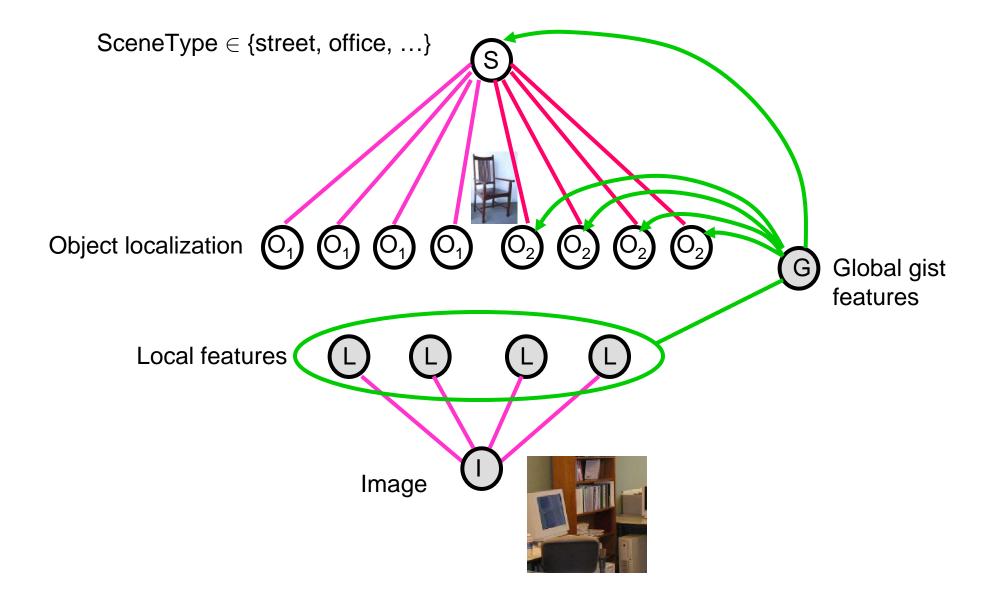
Wearable test-bed v1

Wearable test-bed v2

Place/scene recognition demo



From scenes to objects



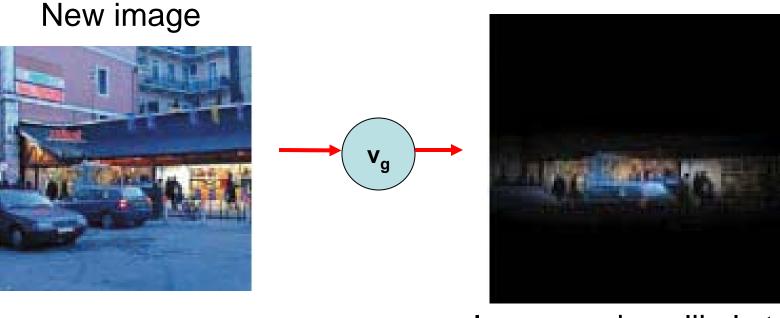


Image regions likely to contain the target

Training set (cars)

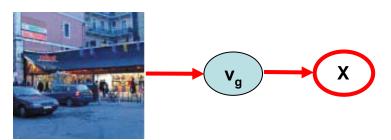
→
$$\{V_g^1, X^1\}$$

$$\rightarrow$$
 {V_g², X²}

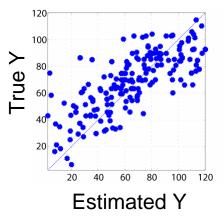
 $\{V_{a}^{3}, X^{3}\}$

The goal of the training is to learn the association between the location of the target and the global scene features

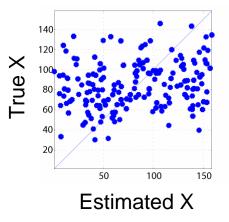
$$\rightarrow$$
 {V_q⁴, X⁴}



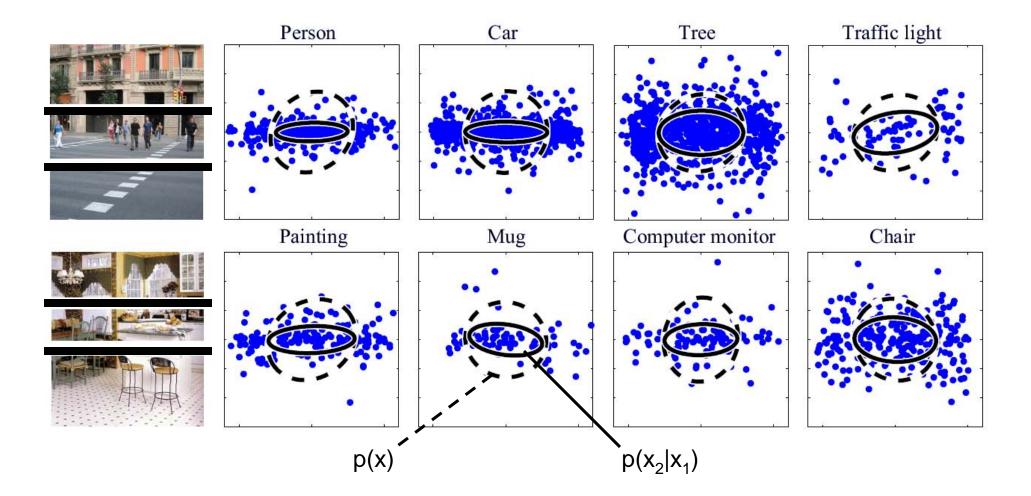
Results for predicting the vertical location of people



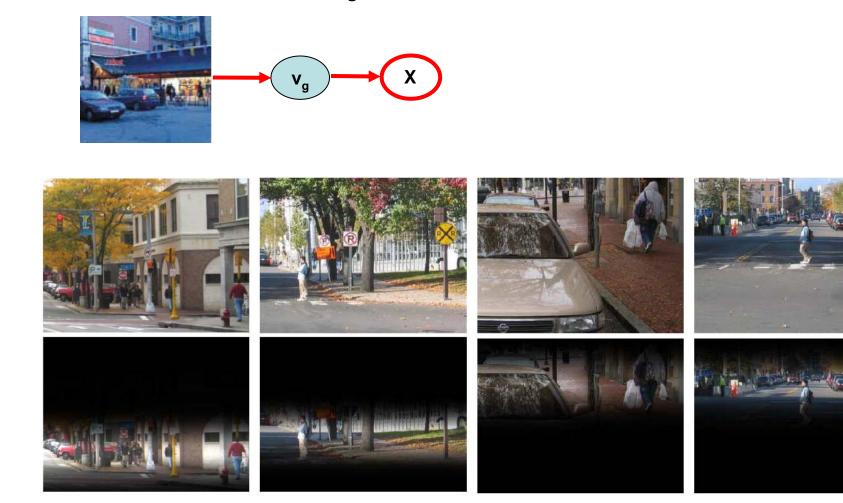
Results for predicting the horizontal location of people



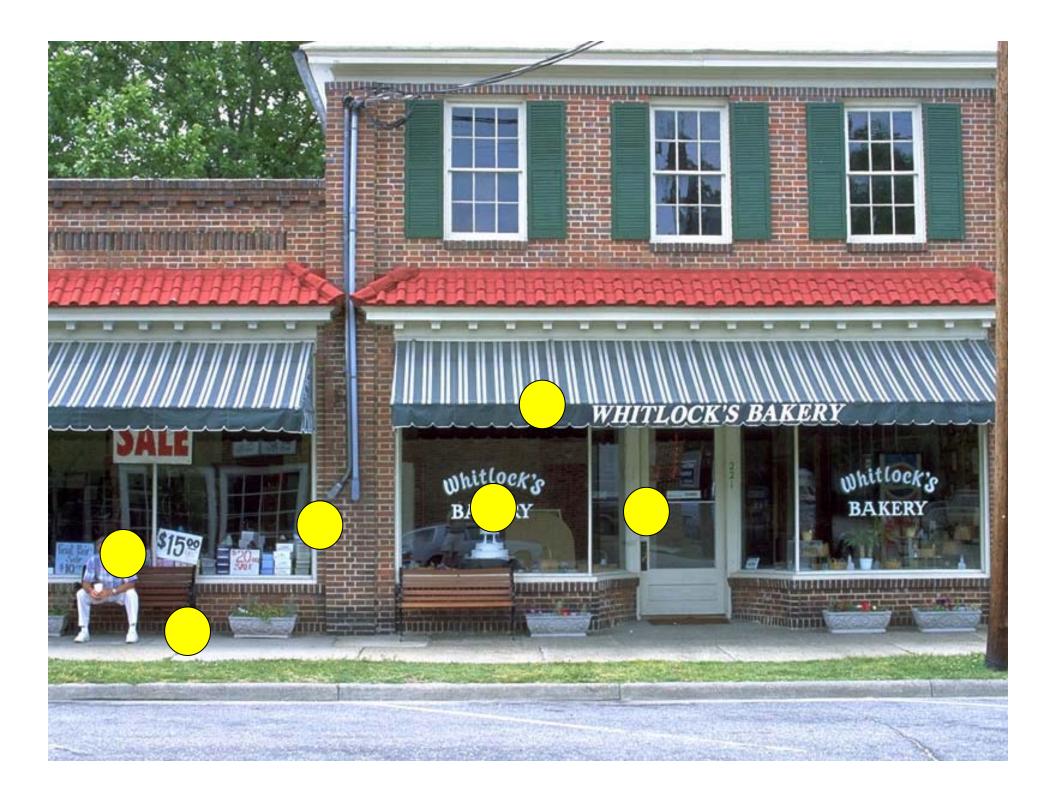
The layered structure of scenes



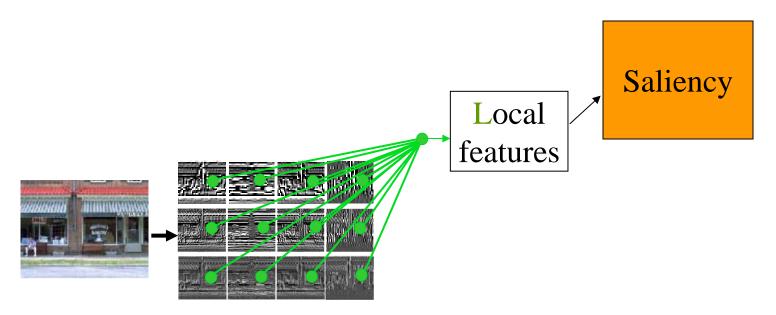
In a display with multiple targets present, the location of one target constraints the 'y' coordinate of the remaining targets, but not the 'x' coordinate.



Stronger contextual constraints can be obtained using other objects.

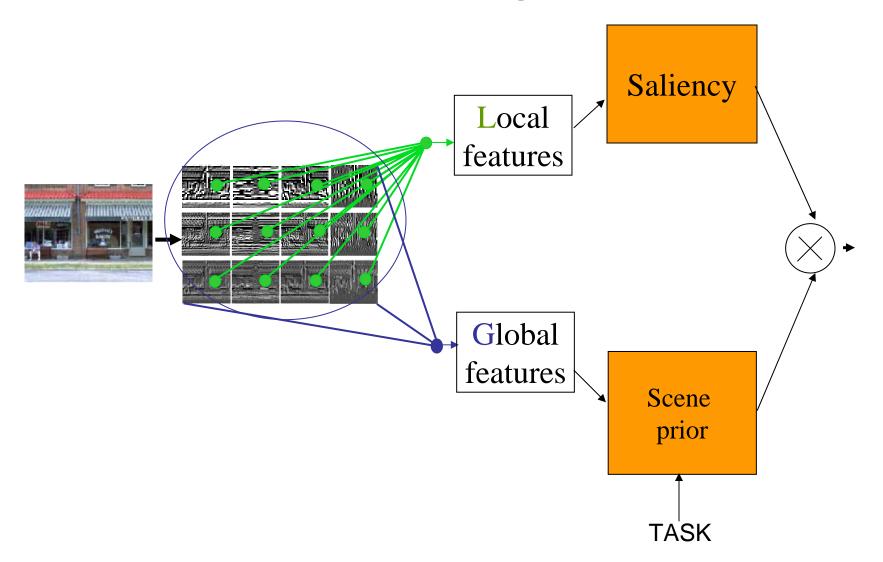


Attentional guidance

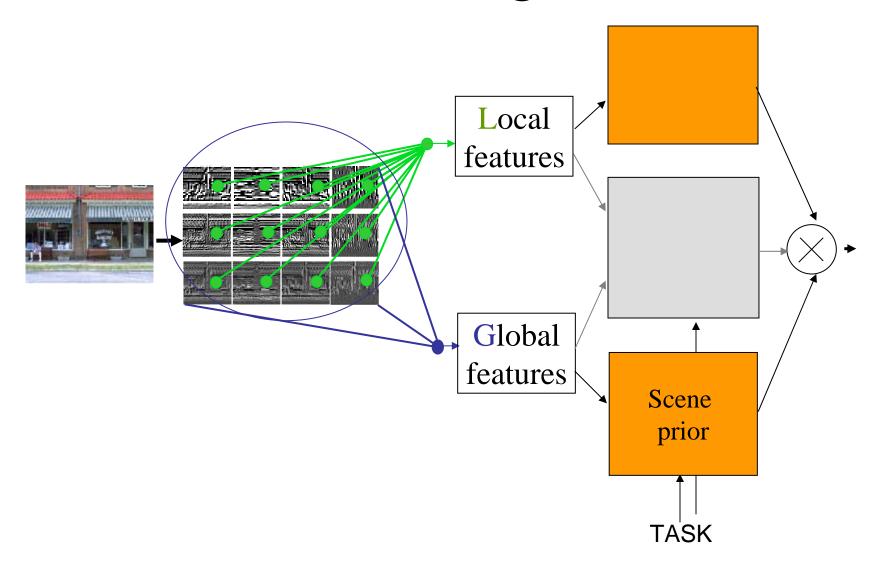


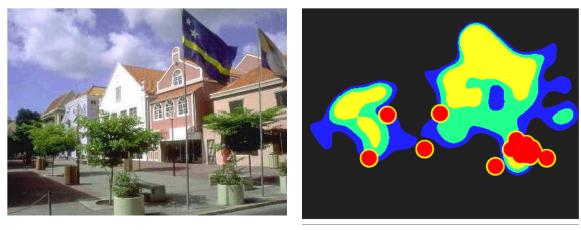
Saliency models: Koch & Ullman, 85; Wolfe 94; Itti, Koch, Niebur, 98; Rosenholtz, 99

Attentional guidance

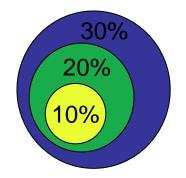


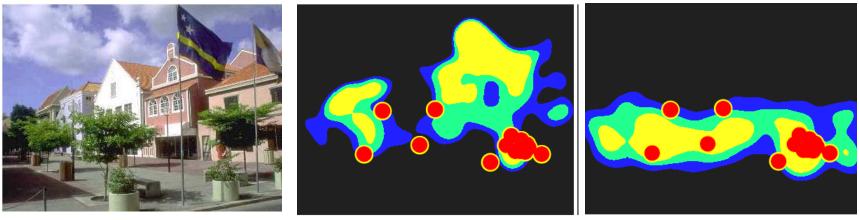
Attentional guidance





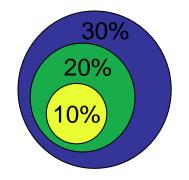
Saliency predictions

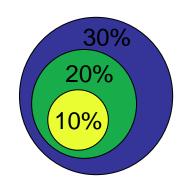




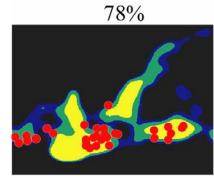
Saliency predictions

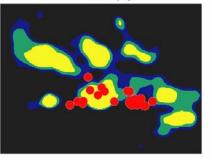
Saliency and Global scene priors

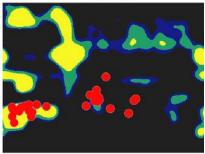




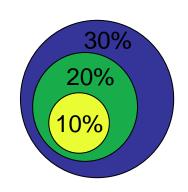
Saliency predictions





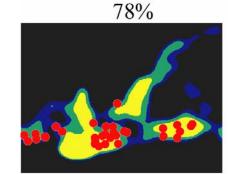


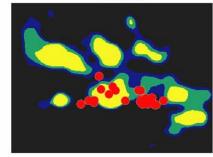
Dots correspond to fixations 1-4

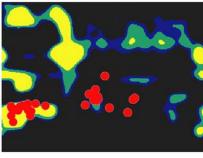


Saliency predictions

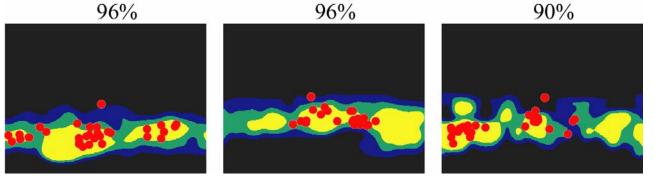
63%





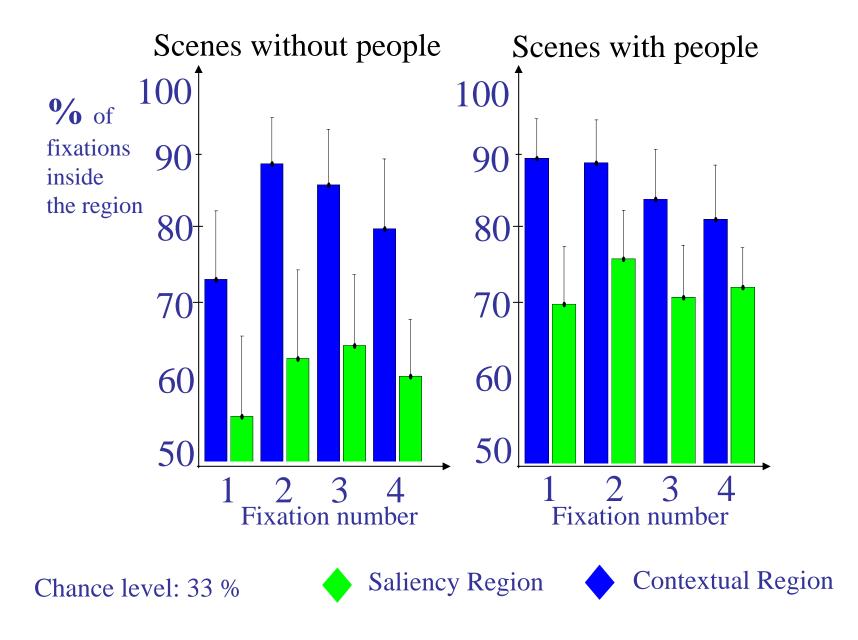


Saliency and Global scene priors

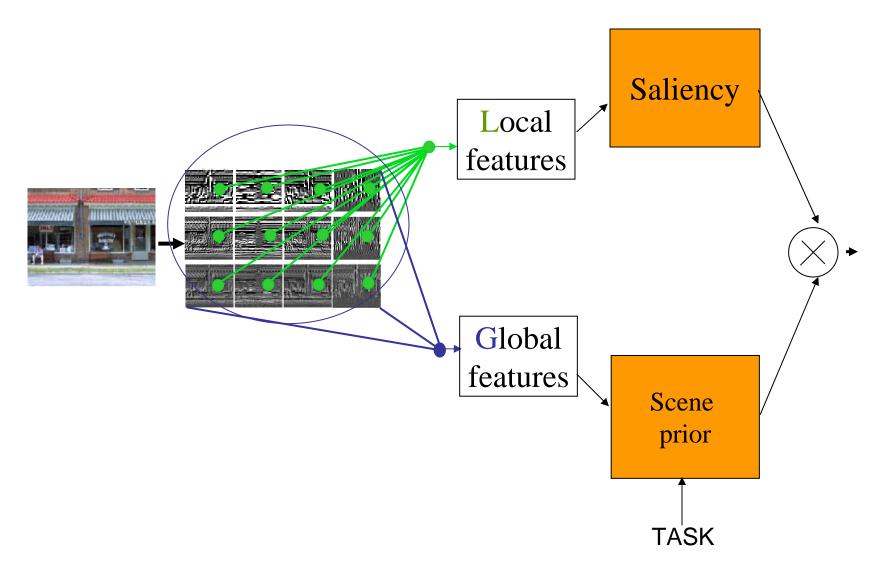


Dots correspond to fixations 1-4

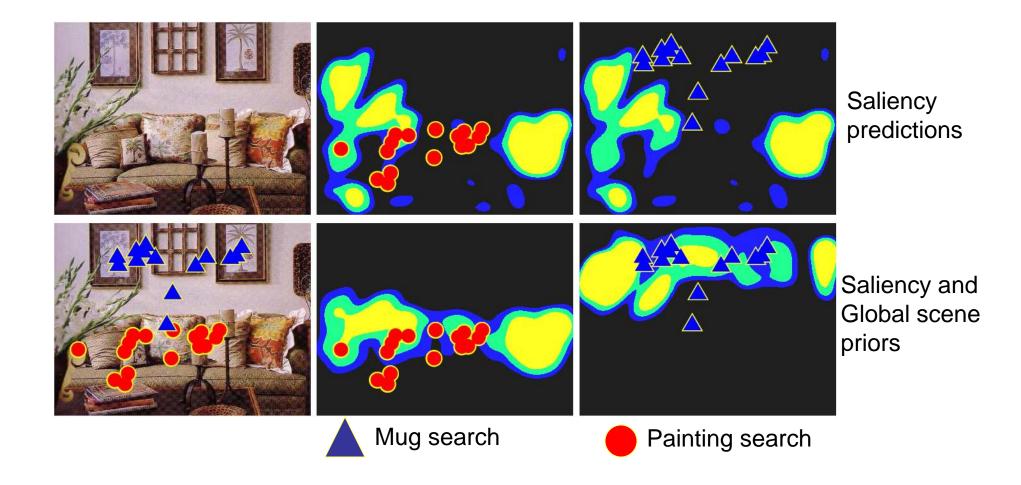
Results



Task modulation



Task modulation



Discussion

- From the computational perspective, scene context can be derived from global image properties and predict where objects are most likely to be.
- Scene context considerably improves predictions of fixation locations. A complete model of attention guidance in natural scenes requires both saliency and contextual pathways