Stability of Tikhonov Regularization 9.520 Class 07, March 2003

Alex Rakhlin

Plan

- Review of Stability Bounds
- Stability of Tikhonov Regularization Algorithms

Uniform Stability

Review notation: $S = \{z_1, ..., z_\ell\}$; $S^{i,z} = \{z_1, ..., z_{i-1}, z, z_{i+1}, ..., z_\ell\}$ $c(f, z) = V(f(\mathbf{x}), y)$, where $z = (\mathbf{x}, y)$.

An algorithm \mathcal{A} has **uniform stability** β if

$$orall (S,z) \in \mathcal{Z}^{\ell+1}, \ orall i, \ \sup_{u \in \mathcal{Z}} |c(f_S,u) - c(f_{S^{i,z}},u)| \leq eta.$$

Last class: Uniform stability of $\beta = O\left(\frac{1}{\ell}\right)$ implies good generalization bounds.

This class: Tikhonov Regularization has uniform stability of $\beta = O\left(\frac{1}{\ell}\right)$.

Reminder: The Tikhonov Regularization algorithm:

$$f_S = \arg\min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} V(f(x_i), y_i) + \lambda \|f\|_K^2$$

Generalization Bounds Via Uniform Stability

If $\beta = \frac{k}{\ell}$ for some k, we have the following bounds from the last lecture:

$$P\left(|I[f_S] - I_S[f_S]| \ge \frac{k}{\ell} + \epsilon\right) \le 2\exp\left(-\frac{\ell\epsilon^2}{2(k+M)^2}\right)$$

Equivalently, with probability $1-\delta$,

$$I[f_S] \le I_S[f_S] + \frac{k}{\ell} + (2k+M)\sqrt{\frac{2\ln(2/\delta)}{\ell}}$$

Lipschitz Loss Functions, I

We say that a loss function (over a possibly bounded domain \mathcal{X}) is Lipschitz with Lipschitz constant L if

 $\forall y_1, y_2, y' \in \mathcal{Y}, |V(y_1, y') - V(y_2, y')| \le L|y_1 - y_2|.$

Put differently, if we have two functions f_1 and f_2 , under an *L*-Lipschitz loss function,

$$\sup_{(\mathbf{x},y)} |V(f_1(\mathbf{x}), y) - V(f_2(\mathbf{x}), y)| \le L|f_1 - f_2|_{\infty}.$$

Yet another way to write it:

$$|c(f_1, \cdot) - c(f_2, \cdot)|_{\infty} \leq L|f_1(\cdot) - f_2(\cdot)|_{\infty}$$

Lipschitz Loss Functions, II

If a loss function is L-Lipschitz, then closeness of two functions (in L_{∞} norm) implies that they are close in loss.

The converse is false — it is possible for the difference in loss of two functions to be small, yet the functions to be far apart (in L_{∞}). Example: constant loss.

The hinge loss and the ϵ -insensitive loss are both L-Lipschitz with L = 1. The square loss function is L Lipschitz if we can bound the y values and the f(x) values generated. The 0-1 loss function is not L-Lipschitz at all — an arbitrarily small change in the function can change the loss by 1:

 $f_1 = 0, f_2 = \epsilon, V(f_1(x), 0) = 0, V(f_2(x), 0) = 1.$

Lipschitz Loss Functions for Stability

Assuming L-Lipschitz loss, we transformed a problem of bounding

$$\sup_{u\in\mathcal{Z}}|c(f_S,u)-c(f_{S^{i,z}},u)|$$

into a problem of bounding $|f_S - f_{S^{i,z}}|_{\infty}$.

As the next step, we bound the above L_{∞} norm by the norm in the RKHS assosiated with a kernel K.

For our derivations, we need to make another assumption: there exists a κ satisfying

$$\forall \mathbf{x} \in \mathcal{X}, \ \sqrt{K(\mathbf{x}, \mathbf{x})} \leq \kappa.$$

Relationship Between L_{∞} and L_K

Using the reproducing property and the Cauchy-Schwartz inequality, we can derive the following:

$$\begin{aligned} \forall \mathbf{x} \ |f(\mathbf{x})| &= |\langle K(\mathbf{x}, \cdot), f(\cdot) \rangle_K| \\ &\leq ||K(\mathbf{x}, \cdot)||_K ||f||_K \\ &= \sqrt{\langle K(\mathbf{x}, \cdot), K(\mathbf{x}, \cdot) \rangle} ||f||_K \\ &= \sqrt{K(\mathbf{x}, \mathbf{x})} ||f||_K \\ &\leq \kappa ||f||_K \end{aligned}$$

Since above inequality holds for all x, we have $|f|_{\infty} \leq ||f||_{K}$.

Hence, if we can bound the RKHS norm, we can bound the L_{∞} norm. Note that the converse is not true.

Note that we now transformed the problem to bounding $||f_S-f_{S^{i,z}}||_K.$

A Key Lemma

We will prove the following lemma about **Tikhonov reg**ularization:

$$||f_S - f_{S^{i,z}}||_K^2 \le \frac{L|f_S - f_{S^{i,z}}|_\infty}{\lambda\ell}$$

This theorem says that when we replace a point in the training set, the change in the RKHS norm (squared) of the difference between the two functions cannot be too large compared to the change in L_{∞} .

We will first explore the implications of this lemma, and defer its proof until later.

Bounding β , I

Using our lemma and the relation between L_K and L_∞ ,

$$||f_S - f_{S^{i,z}}||_K^2 \leq \frac{L|f_S - f_{S^{i,z}}|_{\infty}}{\lambda\ell} \leq \frac{L\kappa||f_S - f_{S^{i,z}}|_{\infty}}{\lambda\ell}$$

Dividing through by $||f_S - f_{S^{i,z}}||_K$, we derive

$$||f_S - f_{S^{i,z}}||_K \le \frac{\kappa L}{\lambda \ell}.$$

Bounding β , II

Using again the relationship between L_K and $L_\infty,$ and the L Lipschitz condition,

$$\begin{aligned} \sup |V(f_S(\cdot), \cdot) - V(f_{S^{z,i}}(\cdot), \cdot)| &\leq L|f_S - f_{S^{z,i}}|_{\infty} \\ &\leq L\kappa ||f_S - f_{S^{z,i}}||_K \\ &\leq \frac{L^2 \kappa^2}{\lambda \ell} \\ &= \beta \end{aligned}$$

Divergences

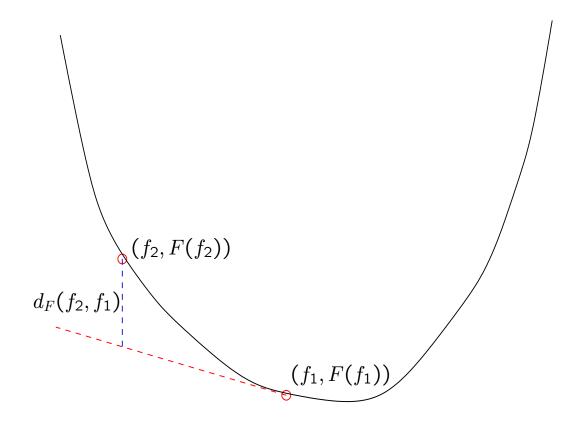
Suppose we have a convex, differentiable function F, and we know $F(f_1)$ for some f_1 . We can "guess" $F(f_2)$ by considering a linear approximation to F at f_1 :

$$\widehat{F}(f_2) = F(f_1) + \langle f_2 - f_1, \nabla F(f_1) \rangle.$$

The Bregman divergence is the error in this linearized approximation:

$$d_F(f_2, f_1) = F(f_2) - F(f_1) - \langle f_2 - f_1, \nabla F(f_1) \rangle.$$

Divergences Illustrated



Divergences Cont'd

We will need the following key facts about divergences:

- $d_F(f_2, f_1) \ge 0$
- If f_1 minimizes F, then the gradient is zero, and $d_F(f_2, f_1) = F(f_2) F(f_1)$.
- If F = A + B, where A and B are also convex and differentiable, then $d_F(f_2, f_1) = d_A(f_2, f_1) + d_B(f_2, f_1)$ (the derivatives add).

The Tikhonov Functionals

We shall consider the Tikhonov functional

$$T_S(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} V(f(\mathbf{x_i}), y_i) + \lambda ||f||_K^2,$$

as well as the component functionals

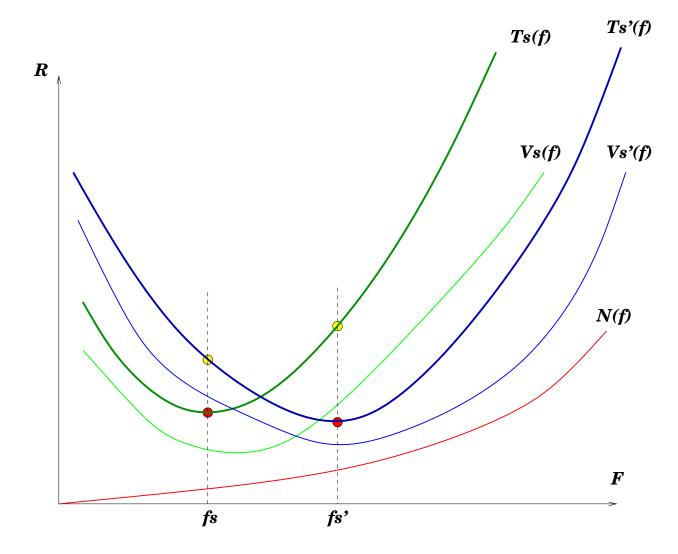
$$V_S(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} V(f(\mathbf{x_i}), y_i)$$

and

$$N(f) = ||f||_K^2.$$

Hence, $T_S(f) = V_S(f) + \lambda N(f)$. If the loss function is convex (in the first variable), then all three functionals are convex.

A Picture of Tikhonov Regularization



Proving the Lemma, I

Let f_S be the minimizer of T_S , and let $f_{S^{i,z}}$ be the minimizer of $T_{S^{i,z}}$, the perturbed data set with (\mathbf{x}_i, y_i) replaced by a new point $z = (\mathbf{x}, y)$. Then

$$\begin{aligned} \lambda(d_N(f_{S^{i,z}}, f_S) + d_N(f_S, f_{S^{i,z}})) &\leq \\ d_{T_S}(f_{S^{i,z}}, f_S) + d_{T_{S^{i,z}}}(f_S, f_{S^{i,z}}) &= \\ \frac{1}{\ell} (c(f_{S^{i,z}}, z_i) - c(f_S, z_i) + c(f_S, z) - c(f_{S^{i,z}}, z)) &\leq \\ \frac{2L|f_S - f_{S^{i,z}}|_{\infty}}{\ell}. \end{aligned}$$

We conclude that

$$d_N(f_{S^{i,z}}, f_S) + d_N(f_S, f_{S^{i,z}}) \le \frac{2L|f_S - f_{S^{i,z}}|_{\infty}}{\lambda\ell}$$

Proving the Lemma, II

But what is $d_N(f_{S^{i,z}}, f_S)$?

We will express our functions as the sum of orthogonal eigenfunctions in the RKHS:

$$f_{S}(\mathbf{x}) = \sum_{n=1}^{\infty} c_{n}\phi_{n}(\mathbf{x})$$
$$f_{S^{i,z}}(\mathbf{x}) = \sum_{n=1}^{\infty} c'_{n}\phi_{n}(\mathbf{x})$$

Once we express a function in this form, we recall that

$$||f||_K^2 = \sum_{n=1}^\infty \frac{c_n^2}{\lambda_n}$$

Proving the Lemma, III

Using this notation, we reexpress the divergence in terms of the c_i and c'_i :

$$d_{N}(f_{S^{i,z}}, f_{S}) = ||f_{S^{i,z}}||_{K}^{2} - ||f_{S}||_{K}^{2} - \langle f_{S^{i,z}} - f_{S}, \nabla ||f_{S}||_{K}^{2} \rangle$$

$$= \sum_{n=1}^{\infty} \frac{c'_{n}^{2}}{\lambda_{n}} - \sum_{n=1}^{\infty} \frac{c_{n}^{2}}{\lambda_{n}} - \sum_{i=1}^{\infty} (c'_{n} - c_{n})(\frac{2c_{n}}{\lambda_{n}})$$

$$= \sum_{n=1}^{\infty} \frac{c'_{n}^{2} + c_{n}^{2} - 2c'_{n}c_{n}}{\lambda_{n}}$$

$$= \sum_{n=1}^{\infty} \frac{(c'_{n} - c_{n})^{2}}{\lambda_{n}}$$

$$= ||f_{S^{i,z}} - f_{S}||_{K}^{2}$$

We conclude that

$$d_N(f_{S^{i,z}}, f_S) + d_N(f_S, f_{S^{i,z}}) = 2||f_{S^{i,z}} - f_S||_K^2$$

Proving the Lemma, IV

Combining these results proves our Lemma:

$$||f_{S^{i,z}} - f_{S}||_{K}^{2} = \frac{d_{N}(f_{S^{i,z}}, f_{S}) + d_{N}(f_{S}, f_{S^{i,z}})}{2} \\ \leq \frac{2L|f_{S} - f_{S^{i,z}}|_{\infty}}{\lambda\ell}$$

Bounding the Loss, I

We have shown that Tikhonov regularization with an *L*-Lipschitz loss is β -stable with $\beta = \frac{L^2 \kappa^2}{\lambda \ell}$. If we want to actually apply the theorems and get the generalization bound, we need to bound the loss.

Let C_0 be the maximum value of the loss when we predict a value of zero. If we have bounds on \mathcal{X} and \mathcal{Y} , we can find C_0 .

Bounding the Loss, II

Noting that the ''all 0'' function $\vec{0}$ is always in the RKHS, we see that

$$\begin{aligned} \lambda ||f_S||_K^2 &\leq T(f_S) \\ &\leq T(\vec{\mathbf{0}}) \\ &= \frac{1}{\ell} \sum_{i=1}^{\ell} V(\vec{\mathbf{0}}(\mathbf{x}_i), y_i) \\ &\leq C_0. \end{aligned}$$

Therefore,

$$||f_S||_K^2 \le \frac{C_0}{\lambda}$$
$$\implies |f_S|_{\infty} \le \kappa ||f_S||_K \le \kappa \sqrt{\frac{C_0}{\lambda}}$$

Since the loss is L-Lipschitz, a bound on $|f_S|_\infty$ implies boundedness of the loss function.

A Note on λ

We have shown that Tikhonov regularization is uniformly stable with

$$\beta = \frac{L^2 \kappa^2}{\lambda \ell}.$$

If we keep λ fixed as we increase ℓ , the generalization bound will tighten as $O\left(\frac{1}{\sqrt{\ell}}\right)$. However, keeping λ fixed is equivalent to keeping our hypothesis space fixed. As we get more data, we want λ to get smaller. If λ gets smaller too fast, the bounds become trivial.

Tikhonov vs. Ivanov

It is worth noting that Ivanov regularization

$$\begin{aligned} \widehat{f}_{H,S} &= \arg \min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} V(f(x_i), y_i) \\ \text{s.t.} & \|f\|_K^2 \leq \tau \end{aligned}$$

is **not** uniformly stable with $\beta = O\left(\frac{1}{n}\right)$, essentially because the constraint bounding the RKHS norm may not be tight. This is an important distinction between Tikhonov and Ivanov regularization.