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Plan

• Review of Stability Bounds

• Stability of Tikhonov Regularization Algorithms



Uniform Stability

Review notation: S = {z1, ..., z`}; Si,z = {z1, ..., zi−1, z, zi+1, ..., z`}
c(f, z) = V (f(x), y), where z = (x, y).

An algorithm A has uniform stability β if

∀(S, z) ∈ Z`+1, ∀i, sup
u∈Z

|c(fS, u) − c(fSi,z, u)| ≤ β.

Last class: Uniform stability of β = O
(

1
`

)

implies good

generalization bounds.

This class: Tikhonov Regularization has uniform stability

of β = O
(

1
`

)

.

Reminder: The Tikhonov Regularization algorithm:

fS = argmin
f∈H

1

`

∑̀

i=1

V (f(xi), yi) + λ‖f‖2K



Generalization Bounds Via Uniform Stability

If β = k
` for some k, we have the following bounds from

the last lecture:

P

(

|I[fS] − IS[fS]| ≥ k

`
+ ε

)

≤ 2 exp

(

− `ε2

2(k + M)2

)

.

Equivalently, with probability 1 − δ,

I[fS] ≤ IS[fS] +
k

`
+ (2k + M)

√

2 ln(2/δ)

`
.



Lipschitz Loss Functions, I

We say that a loss function (over a possibly bounded do-

main X ) is Lipschitz with Lipschitz constant L if

∀y1, y2, y′ ∈ Y, |V (y1, y′) − V (y2, y′)| ≤ L|y1 − y2|.

Put differently, if we have two functions f1 and f2, under

an L-Lipschitz loss function,

sup
(x,y)

|V (f1(x), y) − V (f2(x), y)| ≤ L|f1 − f2|∞.

Yet another way to write it:

|c(f1, ·) − c(f2, ·)|∞ ≤ L|f1(·) − f2(·)|∞



Lipschitz Loss Functions, II

If a loss function is L-Lipschitz, then closeness of two func-

tions (in L∞ norm) implies that they are close in loss.

The converse is false — it is possible for the difference in

loss of two functions to be small, yet the functions to be

far apart (in L∞). Example: constant loss.

The hinge loss and the ε-insensitive loss are both L-Lipschitz

with L = 1. The square loss function is L Lipschitz if we

can bound the y values and the f(x) values generated. The

0−1 loss function is not L-Lipschitz at all — an arbitrarily

small change in the function can change the loss by 1:

f1 = 0, f2 = ε, V (f1(x),0) = 0, V (f2(x),0) = 1.



Lipschitz Loss Functions for Stability

Assuming L-Lipschitz loss, we transformed a problem of

bounding

sup
u∈Z

|c(fS, u) − c(fSi,z, u)|

into a problem of bounding |fS − fSi,z|∞.

As the next step, we bound the above L∞ norm by the

norm in the RKHS assosiated with a kernel K.

For our derivations, we need to make another assumption:

there exists a κ satisfying

∀x ∈ X ,
√

K(x, x) ≤ κ.



Relationship Between L∞ and LK

Using the reproducing property and the Cauchy-Schwartz

inequality, we can derive the following:

∀x |f(x)| = |〈K(x, ·), f(·)〉K |
≤ ||K(x, ·)||K||f ||K
=

√

〈K(x, ·), K(x, ·)〉||f ||K
=

√

K(x,x)||f ||K
≤ κ||f ||K

Since above inequality holds for all x, we have |f |∞ ≤ ||f ||K.

Hence, if we can bound the RKHS norm, we can bound

the L∞ norm. Note that the converse is not true.

Note that we now transformed the problem to bounding

||fS − fSi,z||K.



A Key Lemma

We will prove the following lemma about Tikhonov reg-

ularization:

||fS − fSi,z||2K ≤ L|fS − fSi,z|∞
λ`

This theorem says that when we replace a point in the

training set, the change in the RKHS norm (squared) of

the difference between the two functions cannot be too

large compared to the change in L∞.

We will first explore the implications of this lemma, and

defer its proof until later.



Bounding β, I

Using our lemma and the relation between LK and L∞,

||fS − fSi,z||2K ≤ L|fS − fSi,z|∞
λ`

≤ Lκ||fS − fSi,z||K
λ`

Dividing through by ||fS − fSi,z||K, we derive

||fS − fSi,z||K ≤ κL

λ`
.



Bounding β, II

Using again the relationship between LK and L∞, and the

L Lipschitz condition,

sup |V (fS(·), ·) − V (fSz,i(·), ·)| ≤ L|fS − fSz,i|∞
≤ Lκ||fS − fSz,i||K

≤ L2κ2

λ`
= β



Divergences

Suppose we have a convex, differentiable function F , and

we know F (f1) for some f1. We can “guess” F (f2) by

considering a linear approximation to F at f1:

F̂ (f2) = F (f1) + 〈f2 − f1,∇F (f1)〉.

The Bregman divergence is the error in this linearized ap-

proximation:

dF (f2, f1) = F (f2) − F (f1) − 〈f2 − f1,∇F (f1)〉.



Divergences Illustrated

dF(f2, f1)

(f2, F (f2))

(f1, F (f1))



Divergences Cont’d

We will need the following key facts about divergences:

• dF (f2, f1) ≥ 0

• If f1 minimizes F , then the gradient is zero, and dF (f2, f1) =

F (f2) − F (f1).

• If F = A + B, where A and B are also convex and

differentiable, then dF (f2, f1) = dA(f2, f1) + dB(f2, f1)

(the derivatives add).



The Tikhonov Functionals

We shall consider the Tikhonov functional

TS(f) =
1

`

∑̀

i=1

V (f(xi), yi) + λ||f ||2K,

as well as the component functionals

VS(f) =
1

`

∑̀

i=1

V (f(xi), yi)

and

N(f) = ||f ||2K.

Hence, TS(f) = VS(f) + λN(f). If the loss function is

convex (in the first variable), then all three functionals are

convex.



A Picture of Tikhonov Regularization
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Proving the Lemma, I

Let fS be the minimizer of TS, and let fSi,z be the minimizer

of TSi,z, the perturbed data set with (xi, yi) replaced by a

new point z = (x, y). Then

λ(dN(fSi,z, fS) + dN(fS, fSi,z)) ≤
dTS

(fSi,z, fS) + dT
Si,z

(fS, fSi,z) =

1

`
(c(fSi,z, zi) − c(fS, zi) + c(fS, z) − c(fSi,z, z)) ≤

2L|fS − fSi,z|∞
`

.

We conclude that

dN(fSi,z, fS) + dN(fS, fSi,z) ≤ 2L|fS − fSi,z|∞
λ`



Proving the Lemma, II

But what is dN(fSi,z, fS)?

We will express our functions as the sum of orthogonal

eigenfunctions in the RKHS:

fS(x) =
∞
∑

n=1

cnφn(x)

fSi,z(x) =
∞
∑

n=1

c′nφn(x)

Once we express a function in this form, we recall that

||f ||2K =
∞
∑

n=1

c2n
λn



Proving the Lemma, III

Using this notation, we reexpress the divergence in terms

of the ci and c′i:

dN(fSi,z, fS) = ||fSi,z||2K − ||fS||2K − 〈fSi,z − fS,∇||fS||2K〉

=
∞
∑

n=1

c′2n
λn

−
∞
∑

n=1

c2n
λn

−
∞
∑

i=1

(c′n − cn)(
2cn

λn
)

=
∞
∑

n=1

c′2n + c2n − 2c′ncn

λn

=
∞
∑

n=1

(c′n − cn)2

λn

= ||fSi,z − fS||2K
We conclude that

dN(fSi,z, fS) + dN(fS, fSi,z) = 2||fSi,z − fS||2K



Proving the Lemma, IV

Combining these results proves our Lemma:

||fSi,z − fS||2K =
dN(fSi,z, fS) + dN(fS, fSi,z)

2

≤ 2L|fS − fSi,z|∞
λ`



Bounding the Loss, I

We have shown that Tikhonov regularization with an L-

Lipschitz loss is β-stable with β = L2κ2

λ` . If we want to actu-

ally apply the theorems and get the generalization bound,

we need to bound the loss.

Let C0 be the maximum value of the loss when we predict

a value of zero. If we have bounds on X and Y, we can

find C0.



Bounding the Loss, II

Noting that the “all 0” function ~0 is always in the RKHS,

we see that

λ||fS||2K ≤ T (fS)

≤ T (~0)

=
1

`

∑̀

i=1

V (~0(xi), yi)

≤ C0.

Therefore,

||fS||2K ≤ C0

λ

=⇒ |fS|∞ ≤ κ||fS||K ≤ κ

√

C0

λ

Since the loss is L-Lipschitz, a bound on |fS|∞ implies

boundedness of the loss function.



A Note on λ

We have shown that Tikhonov regularization is uniformly

stable with

β =
L2κ2

λ`
.

If we keep λ fixed as we increase `, the generalization bound

will tighten as O

(

1√
`

)

. However, keeping λ fixed is equiva-

lent to keeping our hypothesis space fixed. As we get more

data, we want λ to get smaller. If λ gets smaller too fast,

the bounds become trivial.



Tikhonov vs. Ivanov

It is worth noting that Ivanov regularization

f̂H,S = argmin
f∈H

1

`

∑̀

i=1

V (f(xi), yi)

s.t. ‖f‖2K ≤ τ

is not uniformly stable with β = O
(

1
n

)

, essentially because

the constraint bounding the RKHS norm may not be tight.

This is an important distinction between Tikhonov and

Ivanov regularization.


