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Plan of the class

• Learning and generalization error

• Approximation problem and rates of convergence

• N-widths

• “Dimension independent” convergence rates
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Note

These slides cover more extensive material than what will

be presented in class.
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Notations review

• I[f] =
∫
X×Y V(f(x), y)p(x, y)dxdy

• Iemp[f] = 1
l

∑l
i=1 V(f(xi), yi)

• f0 = arg minf I[f] , f0 ∈ T

• fH = arg minf∈H I[f]

• f̂H,l = arg minf∈H Iemp[f]
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More notation review

• I[f0] = how well we could possibly do

• I[fH] = how well we can do in space H

• I[f̂H,l] = how well we do in space H with l data

• |I[f] − Iemp[f]| ≤ Ω(H, l, δ) ∀f ∈ H (from VC theory)

• I[f̂H,l] is called generalization error

• I[f̂H,l] − I[f0] is also called generalization error ...
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A General Decomposition

I[f̂H,l] − I[f0] = I[f̂H,l] − I[fH] + I[fH] − I[f0]

generalization error = estimation error + approximation error

When the cost function V is quadratic:

I[f] = ‖f0 − f‖2 + I[f0]

and therefore

‖f0 − fH,l‖2 = I[f̂H,l] − I[fH] + ‖f0 − fH‖2

generalization error = estimation error + approximation error



8

A useful inequality

If, with probability 1 − δ∣∣I[f] − Iemp[f]
∣∣ ≤ Ω(H, l, δ) ∀f ∈ H

then ∣∣I[f̂H,l] − I[fH]
∣∣ ≤ 2Ω(H, l, δ)

You can prove it using the following observations:

• I[fH] ≤ I[f̂H,l] (from the definition of fH)

• Iemp[f̂H,l] ≤ Iemp[fH] (from the definition of f̂H,l)
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Bounding the Generalization Error

‖f0 − fH,l‖2 ≤ 2Ω(H, l, δ) + ‖f0 − fH‖2

Notice that:

• Ω has nothing to do with the target space T , it is

studied mostly in statistics;

• ‖f0 − fH‖ has everything to do with the target space T ,

it is studied mostly in approximation theory;
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Approximation Error

We consider a nested family of hypothesis spaces Hn:

H0 ⊂ H1 ⊂ . . . Hn ⊂ . . .

and define the approximation error as:

εT (f, Hn) ≡ inf
h∈Hn

‖f − h‖

εT (f, Hn) is the smallest error that we can make if we

approximate f ∈ T with an element of Hn (here ‖ · ‖ is

the norm in T ).



11

Approximation error

For reasonable choices of hypothesis spaces Hn:

lim
n→∞ εT (f, Hn) = 0

This means that we can approximate functions of T
arbitrarily well with elements of {Hn}∞n=1

Example: T = continuous functions on compact sets,

and Hn = polynomials of degree at most n.
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The rate of convergence

The interesting question is:

How fast does εT (f, Hn) go to zero?

• The rate of convergence is a measure of the relative

complexity of T with respect to the approximation

scheme H.

• The rate of convergence determines how many samples

we need in order to obtain a given generalization error.
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An Example

• In the next slides we compute explicitly the rate of

convergence of approximation of a smooth function by

trigonometric polynomials.

• We are interested in studying how fast the approximation

error goes to zero when the number of parameters of

our approximation scheme goes to infinity.

• The reason for this exercise is that the results are

representative: more complex and interesting cases all

share the basic features of this example.
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Approximation by Trigonometric Polynomials

Consider the set of functions

C2[−π, π] ≡ C[−π, π]
⋂

L2[−π, π]

Functions in this set can be represented as a Fourier

series:

f(x) =

∞∑
k=0

cke
ikx

, ck ∝
∫π

−π
dxf(x)e

−ikx

The L2 norm satisfies the equation:

‖f‖2
L2

=

∞∑
k=0

ck
2
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We consider as target space the following Sobolev space

of smooth functions:

Ws,2 ≡

f ∈ C2[−π, π] |

∥∥∥∥dsf

dxs

∥∥∥∥2

L2

< +∞


The (semi)-norm in this Sobolev space is defined as:

‖f‖2
Ws,2

≡
∥∥∥∥dsf

dxs

∥∥∥∥2

L2

=

∞∑
k=1

k
2s

ck
2

If f belongs to Ws,2 then Fourier coefficients ck must go

to zero at a rate which increases with s.
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We choose as hypothesis space Hn the set of

trigonometric polynomials of degree n:

p(x) =

n∑
k=1

ake
ikx

Given a function of the form

f(x) =

∞∑
k=0

cke
ikx

the optimal hypothesis fn(x) is given by the first n terms

of its Fourier series:

fn(x) =

n∑
k=1

cke
ikx
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Key Question

For a given f ∈ Ws,2 we want to study the approximation

error:

εn[f] ≡ ‖f − fn‖2
L2

• Notice that n, the degree of the polynomial, is also the

number of parameters that we use in the approximation.

• Obviously εn goes to zero as n → +∞, but the key

question is: how fast?
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An easy estimate of εn

εn[f] ≡ ‖f − fn‖2
L2

=
∑∞

k=n+1 c2
k =

∑∞
k=n+1 c2

kk
2s 1

k2s <

<
1

n2s

∑∞
k=n+1 c2

kk
2s <

1
n2s

∑∞
k=1 c2

kk
2s =

‖f‖2Ws,2

n2s

⇓
εn[f] <

‖f‖2
Ws,2

n2s

More smoothness ⇒ faster rate of convergence

But what happens in more than one dimension?
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Rates of convergence in d dimensions

It is enough to study d = 2. We proceed in full analogy

with the 1-d case:

f(x, y) =

∞∑
k,m=1

ckme
i(kx+my)

‖f‖2
Ws,2

≡
∥∥∥∥dsf

dxs

∥∥∥∥2

L2

+

∥∥∥∥dsf

dys

∥∥∥∥2

L2

=

∞∑
k,m=1

(k
2s

+ m
2s

)c
2
km

Here Ws,2 is defined as the set of functions such that

‖f‖2
Ws,2

< +∞
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We choose as hypothesis space Hn the set of

trigonometric polynomials of degree l:

p(x) =

l∑
k,m=1

akme
(ikx+imy)

A trigonometric polynomial of degree l in d variables has

a number of coefficients n = ld.

We are interested in the behavior of the approximation

error as a function of n. The approximating function is:

fn(x, y) =

l∑
k,m=1

ckme
(ikx+imy)
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An easy estimate of εn

εn[f] ≡ ‖f − fn‖2
L2

=

∞∑
k,m=l+1

c
2
km =

∞∑
k,m=l+1

c
2
km

(k2s + m2s)

k2s + m2s
<

<
1

2l2s

∞∑
k,m=l+1

c
2
km(k

2s
+ m

2s
) <

1

2l2s

∞∑
k,m=1

c
2
km(k

2s
+ m

2s
) =

=
‖f‖2

Ws,2

2l2s

Since n = ld, then l = n
1
d (with d = 2), and we obtain:

εn <
‖f‖2

Ws,2

2n
2s
d
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(Partial) Summary

The previous calculations generalizes easily to the

d-dimensional case. Therefore we conclude that:

if we approximate functions of d variables with s

square integrable derivatives with a trigonometric
polynomial with n coefficients, the approximation error
satisfies:

εn <
C

n
2s
d

More smoothness s ⇒ faster rate of convergence

Higher dimension d ⇒ slower rate of convergence
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Another Example: Generalized Translation Networks

Consider networks of the form:

f(x) =

n∑
k=1

akφ(Akx + bk)

where x ∈ Rd, bk ∈ Rm, 1 ≤ m ≤ d, Ak are m× d

matrices, ak ∈ R and φ is some given function.

For m = 1 this is a Multilayer Perceptron.

For m = d, Ak diagonal and φ radial this is a Radial Basis

Functions network.
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Theorem (Mhaskar, 1994)

Let W
p
s (Rd) be the space of functions whose derivatives

up to order s are p-integrable in Rd. Under very general

assumptions on φ one can prove that there exists d×m

matrices {Ak}
n
k=1 such that, for any f ∈ W

p
s (Rd), one can

find bk and ak such that:

‖f −

n∑
k=1

akφ(Akx + bk)‖p ≤ cn
− s

d‖f‖W
p
s

Moreover, the coefficients ak are linear functionals of f.

This rate is optimal
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The curse of dimensionality

If the approximation error is

εn ∝
(

1

n

) s
d

then the number of parameters needed to achieve an

error smaller than ε is:

n ∝
(

1

ε

)d
s

the curse of dimensionality is the d factor;

the blessing of smoothness is the s factor;
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Jackson type rates of convergence

It happens “very often” that rates of convergence for

functions in d dimensions with “smoothness” of order s

are of the Jackson type:

O

((
1

n

) s
d

)

Example: polynomial and spline approximation

techniques, many non-linear techniques.

Can we do better than this? Can we defeat the
curse of dimensionality? Have we tried hard enough
to find “good” approximation techniques?
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N-widths: definition (from Pinkus, 1980)

Let X be a normed space of functions, A a subset of X.

We want to approximate elements of X with linear

superposition of n basis functions {φi}
n
i=1.

Some sets of basis functions are better than others: which

are the best basis function? what error do they achieve?

To answer these questions we define the Kolmogorov
n-width of A in X:

dn(A, X) = inf
φ1,...φn

sup
f∈A

inf
c1,...cn

∥∥∥∥∥f −

n∑
i=1

ciφi

∥∥∥∥∥
X
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Example (Kolmogorov, 1936)

X = L2[0, 2π]

W̃s
2 ≡ {f | f ∈ Cs−1[0, 2π], f(j) periodic, j = 0, . . . , s − 1}

A = B̃s
2 ≡ {f | f ∈ W̃s

2 , ‖f(s)‖2 ≤ 1} ⊂ X

Then

d2n−1(B̃
s
2, L2) = d2n(B̃

s
2, L2) =

1

ns

and the following Xn is optimal (in the sense that it

achieves the rate above):

X2n−1 = span{1, sin(x), cos(x), . . . , sin(n − 1)x, cos(n − 1)x}
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Example: multivariate case

Id ≡ [0, 1]d

X = L2[Id]

Ws
2[Id] ≡ {f | f ∈ Cs−1[Id] , f(s) ∈ L2[Id]}

Bs
2 ≡ {f | f ∈ Ws

2[Id] , ‖f(s)‖2 ≤ 1}

Theorem (from Pinkus, 1980)

dn(B
s
2, L2) ≈

(
1

n

) s
d

Optimal basis functions are usually splines (or their

relatives)
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Dimensionality and smoothness

Classes of functions in d dimensions with smoothness of

order s have an intrinsic complexity characterized by the

ratio s
d
:

• the curse of dimensionality is the d factor;

• the blessing of smoothness is the s factor;

We cannot expect to find an approximation technique

that “beats the curse of dimensionality”, unless we let
the smoothness s increase with the dimension d.
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Theorem (Barron, 1991)

Let f be a function such that its Fourier transform

satisfies

∫
Rd

dω ‖ω‖|f̃(ω)| < +∞
Let Ω be a bounded domain in Rd. Then we can find a

neural network with n coefficients ci, n weights wi and n

biases θi such that

∥∥∥∥∥f −

n∑
i=1

ciσ(x ·wi + θi)

∥∥∥∥∥
2

L2(Ω)

<
c

n

The rate of convergence is independent of the
dimension d.
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Here is the trick...

The space of functions such that

∫
Rd

dω ‖ω‖|f̃(ω)| < +∞ .

is the space of functions that can be written as

f =
1

‖x‖d−1
∗ λ

where λ is any function whose Fourier transform is

integrable.

Notice how the space becomes more constrained as the

dimension increases.
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Theorem (Girosi and Anzellotti, 1992)

Let f ∈ Hs,1(Rd), where Hs,1(Rd) is the space of functions

whose partial derivatives up to order s are integrable, and

let Ks(x) be the Bessel-Macdonald kernel, that is the

Fourier transform of

K̃s(ω) =
1

(1 + ‖ω‖2)
s
2

s > 0 .

If s > d and s is even, we can find a Radial Basis

Functions network with n coefficients cα and n centers tα

such that

‖f −

n∑
α=1

cαKs(x − tα)‖2
L∞ <

c

n
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Theorem (Girosi, 1992)

Let f ∈ Hs,1(Rd), where Hs,1(Rd) is the space of functions

whose partial derivatives up to order s are integrable. If

s > d and s is even, we can find a Gaussian basis function

network with n coefficients cα, n centers tα and n

variances σα such that

‖f −

n∑
α=1

cαe
−

(x−tα)2

2σ2
α ‖2

L∞ <
c

n
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Same rate of convergence: O( 1√
n
)

Function space Norm Approximation scheme

∫
Rd dω |f̃(ω)| < +∞ L2(Ω) f(x) =

∑n
i=1 ci sin(x · wi + θi)

(Jones)

∫
Rd dω ‖ω‖|f̃(ω)| < +∞ L2(Ω) f(x) =

∑n
i=1 ciσ(x · wi + θi)

(Barron)

∫
Rd dω ‖ω‖2|f̃(ω)| < +∞ L2(Ω) f(x) =

∑n
i=1 ci|x · wi + θi|++

(Breiman) + a · x + b

f̃(ω) ∈ Cs
0, 2s > d L∞(Rd) f(x) =

∑n
α=1 cαe−‖x−tα‖2

(Girosi and Anzellotti)

H2s,1(Rd), 2s > d L∞(Rd) f(x) =
∑n

α=1 cαe

−
‖x−tα‖2

σ2
α

(Girosi)
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Summary

• There is a trade off between the size of the sample (l)

and the size of the hypothesis space n;

• For a given pair of hypothesis and target space the

approximation error depends on the trade off between

dimensionality and smoothness;

• The trade off has a “generic” form and sets bounds

on what can and cannot be done, both in linear and

non-linear approximation;

• Suitable spaces, which trade dimensionality versus

smoothness, can be defined in such a way that the rate

of convergence of the approximation error is independent

of the dimensionality.
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