Text Classification

Jason Rennie
jrennie@ai.mit.edu

Text Classification

- Assign text document a label based on content.
- Examples:
- E-mail filtering
- Knowedge-base creation
- E-commerce
- Question Answering
- Information Extraction

E-mail Filtering

- Filter e-mail into folders set up by user.
- Aids searching for old e-mails
- Can be used to prioritize incoming e-mails
- High priority to e-mails concerning your Ph.D. thesis
- Low priority to "FREE Pre-Built Home Business"

Knowedge-Base Creation

- Company web sites provide large amounts of information about products, marketing contact persons, etc.
- Categorization can be used to find companies' web pages and organize them by industrial sector.
- This information can be sold to, e.g. person who wants to market "Flat Fixer" to tire company.

E-Commerce

- Users locate products in two basic ways: search and browsing.
- Browsing is best when user doesn't know exactly what he/she wants.
- Text classification can be used to organize products into a hierarchy according to description.
- EBay: Classification can be used to ensure that product fits category given by user.

Question Answering

- "When did George Washington die?"
- Search document database for short strings with answer.
- Rank candidates
- Many features (question type, proper nouns, noun overlap, verb overlap, etc)
- Problem: learn if string is the answer based on its feature values.

Information Extraction

- Want to extract information from talk announcements (room, time, date, title, speaker, etc)
- Many features may identify the information (keyword, punctuation, capitalization, numeric tokens, etc.)
- Problem: scan over text of document, filling buckets with desired information.
- Freitag (1998) showed that this approach could identify speaker (63%) , location (76%), start time (99%) and end time (96%).

Basics of Text Classification

- Canonical Problem: Set of training documents, $\left(d_{1}, \ldots, d_{n}\right)$, with labels, $\left(y_{1}, \ldots, y_{n}\right)$. Set of test documents, $\left(x_{1}, \ldots, x_{n}\right)$.
- Goal: Assign correct labels to test documents.

Representation

From: dyer@spdcc.com (Steve Dyer)
Subject: Re: food-related seizures?

My comments about the Feingold Diet have no relevance to your daughter's purported FrostedFlakes-related seizures. I can't imagine why you included it.

\downarrow	
food	1
seizures	2
diet	1
catering	0
religion	0
\vdots	\vdots

Representation

- Punctuation is removed, case is ignored, words are separated into tokens. Known as "feature vector" or "bag-of-words" representation.
- Vector length is size of vocabulary. Common vocabulary size is 10,000-100,000. Classification problem is very high dimensional.

Why is text different?

- Near independence of features
- High dimensionality (often larger vocabulary than \# of examples!)
- Importance of speed

Word Vector has Problems

- longer document \Rightarrow larger vector
- words tend to occur a little or a lot
- rare words have same weight as common words

Text is Heavy Tailed

SMART "ltc" Transform

- new- $\mathrm{ff}_{i}=\log \left(\mathrm{tf}_{i}+1.0\right)$
- Corresponds to a power law distribution:

$$
p\left(\mathrm{tf}_{i}\right) \propto\left(1+\mathrm{tf}_{i}\right)^{\log \theta}
$$

- new-wt ${ }_{i}=$ new- $\mathrm{tf}{ }_{i} * \log \frac{\text { num-docs }}{\text { num-docs-with-term }}$ ("TFIDF")
- norm- $^{\mathrm{wt}_{i}}=\frac{\text { new-wt }_{i}}{\sqrt{\sum_{i} \text { new-wt }_{i}^{2}}}$ (unit length vectors)

Types of Classification Problems

- Binary: label each new document as positive or negative. Is this a news article Tommy would want to read?
- Multiclass: give one of m labels to each new document. Which customer support group should respond to this e-mail?
- Multitopic: assign zero to m topics to each new document. Who are good candidates for reviewing this research paper?
- Ranking: rank categories by relevance. Help user annotate documents by suggesting good categories.

Multiclass Classification

- Decision Theory: minimum error decision boundary lies where density of top two classes are equal.
- Problem: Learning densities is ineffective for classification

Multiclass Classification

- Simple approach: construct one binary classifier to discriminate each class from the rest.
- Problem: we can't say anything about the middle regions.

Multiclass Classification

- Better approach: construct lots of binary classifiers that, together, approximate the true boundaries.

Error Correcting Output Coding

- Idea: Represent each label as a length l binary code. Learn one binary classifier for each of the l bits in the code.
- For each example, assign label with "closest" code.
- Motivation: errors can be corrected using more bits than are needed to partition labels.

$$
\begin{array}{l|lllllll}
1 & +1 & +1 & +1 & +1 & -1 & -1 & -1 \\
2 & +1 & -1 & -1 & -1 & +1 & -1 & -1 \\
3 & -1 & +1 & -1 & -1 & -1 & +1 & -1 \\
4 & -1 & -1 & +1 & -1 & -1 & -1 & +1
\end{array}
$$

Code matrix

ECOC: The Loss Function

- ECOC works best when margin values are used

$$
\begin{equation*}
\hat{H}(x)=\arg \min _{c \in\{1, \ldots, m\}} \sum_{i=1}^{l} g\left(f_{i}(x) M_{c i}\right) \tag{2}
\end{equation*}
$$

- The loss function (g) is a transform on the outputs:

Hamming

Hinge (SVM)

Logistic

ECOC: Some Results

- ECOC works better than using the usual multiclass approach for DTs and NNs. (Dietterich and Bakiri, 1995).
- Loss-based decoding works better than Hamming decoding using SVMs (Allwein et. al., 2000).
- ECOC w/ loss decoding very effective for text classification (Rennie and Rifkin, 2001).

Multiclass Classification: Interesting Questions

- Is a continuous code matrix useful? (Crammer \& Singer 2001)
- How do you construct best code matrix? (Crammer \& Singer 2000) (Assumes existence of binary classifiers)

Multitopic Classification

- A document may be composed of many different topics.
- Zero or many topics per document.
- "Label" is a bit vector of topic indicators.

Iraq Politics	
Oil	London Traffic Taxes

Multitopic Classification

- Basic approach: learn a binary classifier for each topic.

Iraq	vs.	Non-Iraq
Politics	vs.	Non-Politics
Oil	vs.	Non-Oil

- Problem: "Iraq" doucument contains other things too.

Multitopic Classification

- How to identify part of document that gives it "Iraq" topic?
- Easier problem: How do we model a multi-topic document?

Multitopic Classification

- If we ignore word order, each word is randomly generated from one of m topicmodels.
- Problem becomes: how do we learn model for each topic?
- Ueda and Saito (2003) suggest modeling text as a multinomial and learning the models with an EM-like algorithm.

Parametric Mixture Model

- Let \vec{y} be a label (bit vector)
- Let $\vec{\theta}_{t}=\left(\theta_{t 1}, \ldots, \theta_{t V}\right)$ be the model for topic t.
- Let $h_{t}(\vec{y})$ be the label \vec{y} mixing proportion for topic t.

Model for a document with label \vec{y} is

$$
\begin{equation*}
\phi(\vec{y})=\sum_{t=1}^{m} h_{t}(\vec{y}) \vec{\theta}_{t} . \tag{3}
\end{equation*}
$$

- Parameters for \vec{y} are a convex combination

Parametric Mixture Model

- Simple case (PMM1): Assume $h_{t}(\vec{y})$ equals $\frac{1}{k}, k$ is number of non-zero bits in \vec{y}. (convex optimization)
- Harder case (PMM2): Learn $h_{t}(\vec{y})$ via EM.
- Ueda and Saito: PMM1 works better than NB, SVM, kNN and NN. PMM2 useful in certain cases.
- PMM related to (McCallum 1999) and Latent Dirichlet Analysis (Blei, Ng, Jordan 2002)

Multitopic Classification: Interesting Problems

- Identify region(s) of document corresponding to topic(s)
- Capturing correlation between topics
- Hierarchy of topics (is parent or child more appropriate?)

Ranking

- How do you design a personalized search engine?
- Input: Ranking of documents based on relevance
- Want to learn a function that assigns rankings given a query

Ranking

- Option 1: Label documents rank R or higher "relevant," $R+1$ or lower "not-relevant," train a classifier. Rank based on classifier confidence values.
- Option 2: Train regression algorithm on rank values. Rank based on regression outputs.
- Option 3: Train a ranking algorithm.

Ranking

- A ranking algorithm has same form as classification and regression algorithms.
- Example: $f(x)=\sum w_{i} x_{i}$ (linear)
- Difference is training
- Question: What constitutes a mistake?

Ranking: What is a Mistake?

- Classification: mistake if predicted rank, r, greater than R and real rank, r^{t} less than R (or vice versa)
- Regression: error is difference between predicted value and true rank, $\left(r-r^{t}\right)^{2}$
- Ranking: mistake if documents are in wrong order

Ranking Loss: Examples

- Let $\left\{d_{1}, \ldots, d_{n}\right\}$ be a set of documents.
- Let $\left\{y_{1}^{t}, \ldots, y_{n}^{t}\right\}$ be the true ranks.
- Let $\left\{\hat{y}_{1}, \ldots, \hat{y}_{n}\right\}$ be the predicted ranks.
- Let $e_{i}=\left|y_{i}^{t}-\hat{y}_{i}\right|$.
- Loss $=\sum_{i} e_{i}$.

Ranking Loss

- Ranking Loss better suited to a ranking problem
- Crammer and Singer (2002) show that using a ranking loss function works better on text than using the zero-one classification loss.

Review

- "Text Classification" appears in many forms
- Multiclass classification
- Multitopic classification
- Ranking

Tokenization

- First step of text classification is tokenization.

> Document \rightarrow Tokenization $\quad \rightarrow$ Stemming \rightarrow
> Feature Selection \rightarrow Bag of Words
"They just canceled them completely"

canceled	completely	just	them	they

Tokenization

- Tokenization determines the features for the classifier
- A bad classifier with good features can easily outperform a good classifier with bad features
- Very important step!

Tokenization

- Tokenization gets little attention
- Standard methods: separate on whitespace, alphabetic strings, alphanumeric strings.
- Problem: different tokenizations work best for different domains.
- Is there a better way?

Compression for Word Learning

- Can compression help tokenization?
- We want tokens to reflect features that appear in the documents.
- Compression encourages the construction of features that appear more frequently than their individual characters would imply.

Compression for Word Learning: An Idea

- Begin with individual characters as the tokens.
- Allow pairs of tokens to be compressed together.
- De Marcken (1995) did exactly this.
- Creates a hierarchical decomposition of documents.

Compression: Examples

Rank	$-\log p_{G}(w)$	w	$\operatorname{rep}(w)$
0	4.589	.	terminal
1	4.890	,	terminal
100	10.333	[two]	[[two]]
101	10.342	[it was]	[[it][was]]
501	12.467	[ized]	[[ize]d]
502	12.469	[ling]	[l[ing]]
15000	16.684	[pakistan]	[[palk[ist][an]]
15001	16.684	[creativity]	[[creat][ivity]]
27167	18.006	[[massachus	tts][institute of technology]]

Compression: Hierarchy Example

$$
\begin{aligned}
& [[f[\mathrm{rr}]][[\mathrm{t}[\mathrm{he}]]][[[\mathrm{p}[\mathrm{ur}]]][[\mathrm{po}] \mathrm{s}] \mathrm{e}][\mathrm{of}]]]][[[\mathrm{ma}[\mathrm{in}]][\mathrm{ta}[\mathrm{in}]]][\text { [in]g]]} \\
& [[[i n]][\mathrm{ter}]]][[\mathrm{n}[\mathrm{a}[\mathrm{t}[\mathrm{i}[\mathrm{on}]]]]][\mathrm{al}]]][[\mathrm{pe}][\mathrm{a}[\mathrm{ce}]]][\mathrm{an}] \mathrm{d}][[\mathrm{p}[\mathrm{ro}]][[\mathrm{mo}] \mathrm{t}][[\mathrm{in}] \mathrm{g}]] \\
& [\mathrm{t}[\mathrm{he}]][[\mathrm{adv}[\mathrm{a}[\mathrm{n}[\mathrm{ce}]]]][[[\mathrm{me}] \mathrm{n}] \mathrm{t}]][[\mathrm{of}][\mathrm{a}[11]]][\mathrm{pe}][\mathrm{op}][\mathrm{le}]][[\mathrm{t}[\mathrm{he}]] \\
& [[[[\text { un }][\mathrm{itt}]][\mathrm{ed}]][[[\mathrm{st}[\mathrm{at}]] \mathrm{e}] \mathrm{s}]]][[\mathrm{of}][\mathrm{a}[\mathrm{me}][\mathrm{r}[\mathrm{ic}]] \mathrm{a}]]][[\mathrm{job}][\mathrm{in}]][\mathrm{ed}]][\mathrm{in}] \\
& {[f[o[u n] d]][[i n] g][[t[h e]][[[[u n][i t]][\mathrm{ed}]][[\mathrm{n}[\mathrm{a}[\mathrm{t}[\mathrm{i}[\mathrm{on}]]]]] \mathrm{s}]]]}
\end{aligned}
$$

- Tokens can be taken from any level of the hierarchy-from "ur" to "the united nations."
- Much more useful than collecting all substrings.
- Compression object eliminates numerous meaningless strings.

Classification via Compression

Standard compression problem:

- Want to transmit labels with fewest number of bits.
- Documents can be used as background knowledge.
- What is fewest number of bits needed to transmit labels?

Examples of Learned Features

$\bullet \mathrm{x}$	comp.os.xwindows
ヶwindows	comp.os.ms-windows.misc
-car \quad	rec.autos
for - sale	misc.forsale
-turk	talk.politics.mideast
486	comp.sys.ibm.pc.hardware
3.1	comp.os.ms-windows.misc
- \$	misc.forsale
twcondition	misc.forsale

String Kernels

- Kernel method
- Documents projected into feature space of substrings
- Requires discount factor (longer strings receive less weight)
- Thought up by Haussler (1999) and Watkins (1999).
- Lodhi et. al. (2001) successfully applied string kernels to text-found they work about as well as substrings.

Summary

- Text classification comes in many different flavors.
- Text presents interesting and unique problems.

