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About this class

We describe a family of regularization techniques based

on radial kernels K and called RBFs. We introduce

RBF extensions such as Hyper Basis Functions and

characterize their relation with other techniques includ-

ing MLPs and splines.



Radial Basis Functions

Radial Basis Functions, as MLPs, have the universal ap-

proximation property.

Theorem: Let K be a Radial Basis Function function and

Ii the n-dimensional cube [0,1]n. Then finite sums of the

form

f(x) =
N∑

i=1

ciK(x − xi)

are dense in C[Ii]. In other words, given a function h ∈ C[Ii]

and ε > 0, there is a sum, f(x), of the above form, for

which:

|f(x) − h(x)| < ε for all x ∈ In .



Notice that RBF correspond to RKHS defined on an infi-

nite domain. Notice also that RKHS do not in general have

the same approximation property: RKHS generated by a

K with an infinite countable number of strictly positive

eigenvalues are dense in L2 but not necessarily in C(X),

though they can be embedded in C(X).



Density of a RKHS on a bounded domain (the

non-RBF case)

We first ask under which condition is a RKHS dense in L2(X, ν).

1. when LK is strictly positive the RKHS is infinite dimensional and
dense in L2(X, ν).

2. in the degenerate case the RKHS is finite dimensional and not
dense in L2(X, ν).

3. in the conditionally strictly positive case the RKHS is not dense in
L2(X, ν) but when completed with a finite number of polynomials
of appropriate degree can be made to be dense in L2(X, ν).



Density of a RKHS on a bounded domain (cont)

Density of RKHS – defined on a compact domain X – in C(X) (in the
sup norm) is a trickier issue that has been answered very recently by
Zhou (in preparation). It is however guaranteed for radial kernels K
for K continuous and integrable, if density in L2(X, ν) holds (with X
the infinite domain). These are facts for radial kernels and unrelated
to RKHS properties

• span K(x− y) : y ∈ Rn is dense in L2(Rn) iff the Fourier transform
of K goes not vanish on set of positive Lebesque measure (N.
Wiener).

• span K(x − y) : y ∈ Rn is dense in C(Rn) (topology of uniform
convergence) if K ∈ C(Rn), K ∈ L1(Rn).



Some good properties of RBF

• Well motivated in the framework of regularization theory;

• The solution is unique and equivalent to solving a linear system;

• Degree of smoothness is tunable (with λ);

• Universal approximation property;

• Large body of applied math literature on the subject;

• Interpretation in terms of neural networks(?!);

• Biologically plausible;

• Simple interpretation in terms of smooth look-up table;

• Similar to other non-parametric techniques, such as nearest neigh-
bor and kernel regression (see end of this class).



Some not-so-good properties of RBF

• Computationally expensive (O(`3));

• Linear system to be solved for finding the coefficients

often badly ill-conditioned;

• The same degree of smoothness is imposed on different

regions of the domain (we will see how to deal with this

problem in the class on wavelets);



This function has different smoothness properties in dif-

ferent regions of its domain.



A first extension: less centers than data
points

We look for an approximation to the regularization solu-

tion:

f(x) =
∑̀

i=1

ciK(x − xi)

⇓

f∗(x) =
m∑

α=1

cαK(x − tα)

where m << ` and the vectors tα are called centers.

Homework: show that the interpolation problem is still well-posed
when m < `.

(Broomhead and Lowe, 1988; Moody and Darken, 1989; Poggio and Girosi, 1989)



Least Squares Regularization Networks

f∗(x) =
m∑

α=1

cαK(x − tα)

Suppose the centers tα have been fixed.

How do we find the coefficients cα?

⇓

Least Squares



Finding the coefficients

Define

E(c1, . . . , cm) =
∑̀

i=1

(yi − f∗(xi))
2

The least squares criterion is

min
cα

E(c1, . . . , cm)

The problem is convex and quadratic in the cα, and the

solution satisfies:

∂E

∂cα

= 0



Finding the centers

Given the centers tα we know how to find the cα.

How do we choose the tα?

1. a subset of the examples (random);

2. by a clustering algorithm (k-means, for example);

3. by least squares (moving centers);

4. a subset of the examples: Support Vector Machines;



Centers as a subset of the examples

Fair technique. The subset is a random subset, which

should reflect the distribution of the data.

Not many theoretical results available (but we proved that

solution exists since matrix is till pd).

Main problem: how many centers?

Main answer: we don’t know. Cross validation techniques

seem a reasonable choice.



Finding the centers by clustering

Very common. However it makes sense only if the input

data points are clustered.

No theoretical results.

Not clear that it is a good idea, especially for pattern clas-

sification cases.



Moving centers

Define

E(c1, . . . , cm, t1, . . . , tm) =
∑̀

i=1

(yi − f∗(xi))
2

The least squares criterion is

min
cα,tα

E(c1, . . . , cm, t1, . . . , tm).

The problem is not convex and quadratic anymore: expect

multiple local minima.



Moving centers

:-) Very flexible, in principle very powerful (more than

SVMs);

:-) Some theoretical understanding;

:-( Very expensive computationally due to the local minima

problem;

:-( Centers sometimes move in “weird” ways;



Connection with MLP

Radial Basis Functions with moving centers is a particular

case of a function approximation technique of the form:

f(x) =
N∑

i=1

ciH(x,pi)

where the parameters pi can be estimated by least squares

techniques.

Radial Basis Functions corresponds to the choice N = m

and pi = ti, and

H(x, pi) = K(‖x − ti‖)



Extensions of Radial Basis Functions (much beyond what SVMs can do)

• Different variables can have different scales: f(x, y) =

y2 sin(100x);

• Different variables could have different units of measure

f = f(x,
·
x,

··
x);

• Not all the variables are independent or relevant: f(x, y, z, t) =

g(x, y, z(x, y));

• Only some linear combinations of the variables are rel-

evant: f(x, y, z) = sin(x + y + z);



Extensions of regularization theory

A priori knowledge:

• the relevant variables are linear combination of the orig-

inal ones:

z = Wx

for some (possibly rectangular) matrix W ;

• f(x) = g(Wx) = g(z) and the function g is smooth;

The regularization functional is now

∑̀

i=1

(yi − g(zi))
2 + λΦ[g]

where zi = Wxi.



Extensions of regularization theory
(continue)

The solution is

g(z) =
∑̀

i=1

ciK(z − zi) .

Therefore the solution for f is:

f(x) = g(Wx) =
∑̀

i=1

ciK(Wx − Wxi)



Extensions of regularization theory
(continue)

If the matrix W were known, the coefficients could be

computed as in the radial case:

(K + λI)c = y

where

(y)i = yi , (c)i = ci , (K)ij = K(Wxi − Wxj)

and the same argument of the Regularization Networks

technique apply, leading to Generalized Regularization Net-

works:

f∗(x) =
m∑

α=1

cαK(Wx − W tα)



Extensions of regularization theory
(continue)

Since W is usually not known, it could be found by least

squares. Define

E(c1, ..., cm, W ) =
∑̀

i=1

(yi − f∗(xi))
2

Then we can solve:

min
cα,W

E(c1, ..., cm, W )

The problem is not convex and quadratic anymore: expect

multiple local minima.



From RBF to HyperBF

When the basis function K is radial the Generalized Reg-

ularization Networks becomes

f(x) =
m∑

α=1

cαK(‖x − tα‖w)

that is a non radial basis function technique.



Least Squares

1. mincα E(c1, . . . , cm)

2. mincα,tα E(c1, . . . , cm, t1 . . . , tm)

3. mincα,W E(c1, ..., cm, W )

4. mincα,tα,W E(c1, . . . , cm, t1, . . . , tm, W )



A nonradial Gaussian function



A nonradial multiquadric function



Additive models

In statistics an additive model has the form

f(x) =
d∑

µ=1

fµ(x
µ)

where

fµ(x
µ) =

∑̀

i=1

c
µ
i G(xµ − x

µ
i )

In other words

f(x) =
d∑

µ=1

∑̀

i=1

c
µ
i G(xµ − x

µ
i )



Additive stabilizers

To obtain an approximation of the form

f(x) =
d∑

µ=1

fµ(x
µ)

we choose a stabilizer corresponding to an additive basis

function

K(x) =
d∑

µ=1

θµK(xµ)

This scheme leads to an approximation scheme of the ad-

ditive form with

fµ(x
µ) = θµ

∑̀

i=1

ciK(xµ − x
µ
i )

Notice that the additive components are not independent

since there is only one set of ci – which makes sense since

I have only l data points to determine the ci.



Extensions of Additive Models

We start from the non-independent additive component

formulation obtained from additive stabilizers

f(x) =
∑̀

i=1

ci

d∑

µ=1

θµK(xµ − x
µ
i )

We assume now that the parameters θµ are free. We now

have to fit

f(x) =
∑̀

i=1

d∑

µ=1

c
µ
i K(xµ − x

µ
i )

with ` × d independent c
µ
i . In order to avoid overfitting we

reduce the number of centers (m << l):

f(x) =
d∑

µ=1

m∑

α=1

cµ
αK(xµ − tµ

α)



Extensions of Additive Models

If we now allow for an arbitrary linear transformation of

the inputs:

x → Wx

where W is a d′ × d matrix, we obtain:

f(x) =
d′∑

µ=1

m∑

α=1

cµ
αK(x>wµ − tµ

α)

where wµ is the µ-th row of the matrix W .



Extensions of Additive Models

The expression

f(x) =
d′∑

µ=1

m∑

α=1

cµ
αK(x>wµ − tµ

α)

can be written as

f(x) =
d′∑

µ=1

hµ(x
>wµ)

where

hµ(y) =
m∑

α=1

cµ
αK(y − tµ

α)

This form of approximation is called ridge approximation



Gaussian MLP network

From the extension of additive models we can therefore
justify an approximation technique of the form

f(x) =
d′∑

µ=1

m∑

α=1

cµ
αG(x>wµ − tµ

α)

Particular case: m = 1 (one center per dimension). Then
we derive the following technique:

f(x) =
d′∑

µ=1

cµG(x>wµ − tµ)

which is a Multilayer Perceptron with a Radial Basis Func-
tions G instead of the sigmoid function. One can argue
rather formally that for normalized inputs the weight vec-
tors of MLPs are equivalent to the centers of RBFs.

Notice that the sigmoid function cannot be derived –
directly and formally – from regularization but...



Sigmoids and Regularization

Suppose to have learned the representation

f(x) =
d′∑

µ=1

cµK ′(x>wµ − tµ)

where K ′(x) = |x|. Notice that a finite linear combination

of translates of a sigmoidal, piece-wise linear basis function

can be written as a linear combination of translates of |x|.

There is a very close relationship between 1-D radial and

sigmoidal functions.



Regularization Networks
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Regularization networks and Kernel
regression

• Kernel regression: no complex global model of the

world is assumed. Many simple local models instead

(a case of kernel methods)

f(x) =

∑
`
i=1 wi(x)yi

∑
`
i=1 wi(x)

• Regularization networks: fairly complex global model

of the world (a case of dictionary methods)

f(x) =
∑̀

i=1

ciK(x − xi)



Are these two techniques related? Can you say something

about the apparent dichotomy of “local” vs. “global”?



Least square Regularization networks

A model of the form

f(x) =
m∑

α=1

cαK(x − tα)

is assumed and the parameters cα and tα are found by

min
cα,tα

E[{cα}, {tα}]

where

E[{cα}, {tα}] =
∑̀

i=1

(yi − f(xi))
2



Least square Regularization networks

The coefficients cα and the centers tα have to satisfy the

conditions:

∂E

∂cα

= 0 ,
∂E

∂tα

= 0 α = 1, . . . , m

The equation for the coefficients gives:

cα =
∑̀

i=1

Hαiyi

where

H = (KTK)−1KT , Kiα = K(xi − tα)



Dual representation

Substituting the expression for the coefficients in the reg-

ularization network we obtain

f(x) =
∑̀

i=1

yi

m∑

α=1

HT
iαK(x − tα)

f(x) =
∑

`
i=1 yibi(x)

where we have defined

bi(x) =
m∑

α=1

HT
iαK(x − tα)

The basis functions bi(x) are called “dual kernels”.



Equivalent kernels for multiquadric basis functions
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Dual formulation of Regularization networks
and Kernel regression

f(x) =
∑`

i=1 yibi(x) Regularization networks

m

f(x) =
∑`

i=1 wi(x)yi∑`
i=1 wi(x)

Kernel regression

In both cases the value of f at point x is a

weighted average of the values at the data points.



Project: is this true for SVMs? Can it be gener-

alized?



Conclusions

• We have extended – with some hand waving – classical,

quadratic Regularization Networks including RBF into

a number of schemes that are inspired by regularization

though do not strictly follow from it.

• The extensions described seem to work well in practice.

Main problem – for schemes involving moving centers

and or learning the metric – is efficient optimization.


