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About the primer

Goal To brie�y review concepts in functional analysis that

will be used throughout the course�∗ The following

concepts will be described

�� Function spaces

�� Metric spaces

�� Convergence

�� Measure

�� Dense subsets

∗The de�nitions and concepts come primarily from �Introductory Real

Analysis� by Kolmogorov and Fomin �highly recommended��



�� Separable spaces

	� Complete metric spaces


� Compact metric spaces

�� Linear spaces

��� Linear functionals

��� Norms and seminorms of linear spaces

��� Convergence revisited

��� Euclidean spaces

��� Orthogonality and bases

��� Hilbert spaces



��� Delta functions

�	� Fourier transform

�
� Functional derivatives

��� Expectations

��� Law of large numbers



Function space

A function space is a space made of functions� Each

function in the space can be thought of as a point� Ex

amples�

�� C�a, b�� the set of all realvalued continuous functions

in the interval �a, b��

�� L��a, b�� the set of all realvalued functions whose ab

solute value is integrable in the interval �a, b��

�� L��a, b�� the set of all realvalued functions square inte

grable in the interval �a, b�

Note that the functions in � and � are not necessarily

continuous�



Metric space

By a metric space is meant a pair �X, ρ� consisting of a

space X and a distance ρ� a singlevalued� nonnegative�

real function ρ�x, y� de�ned for all x, y ∈ X which has the

following three properties�

�� ρ�x, y� � � i� x � y�

�� ρ�x, y� � ρ�y, x��

�� Triangle inequality� ρ�x, z� ≤ ρ�x, y� � ρ�y, z�



Examples

�� The set of all real numbers with distance

ρ�x, y� � |x − y|

is the metric space IR��

�� The set of all ordered ntuples

x � �x�, ..., xn�

of real numbers with distance

ρ�x, y� �

√√√√ n∑
i��
�xi − yi�
�

is the metric space IRn�



�� The set of all functions satisfying the criteria∫
f��x�dx < ∞

with distance

ρ�f��x�, f��x�� �

√∫

�f��x�− f��x��
�dx

is the metric space L��IR��

�� The set of all probability densities with KullbackLeibler

divergence

ρ�p��x�, p��x�� �

∫

ln

p��x�

p��x�

p��x�dx

is not a metric space� The divergence is not symmetric

ρ�p��x�, p��x�� �� ρ�p��x�, p��x��.



Convergence

An open�closed sphere in a metric space S is the set of

points x ∈ IR for which

ρ�x	, x� < r open

ρ�x	, x� ≤ r closed.

An open sphere of radius ε with center x	 will be called an

ε�neighborhood of x	� denoted Oε�x	��

A sequence of points {xn} � x�, x�, ..., xn, ... in a metric

space S converges to a point x ∈ S if every neighborhood

Oε�x� of x contains all points xn starting from a certain

integer� Given any ε > � there is an integer Nε such that

Oε�x� contains all points xn with n > Nε� {xn} converges

to x i�

lim

n→∞ ρ�x, xn� � �.



Measure

Throughout the course we will see integrals of the form∫
V �f�x�, y�dν�x� →

∫
V �f�x�, y� p�x�dx

ν�x� is the measure�

The concept of the measure ν�E� of a set E is a natural

extension of the concept

�� The length l��� of a line segment �

�� The volume V �G� of a space G

�� The integral of a nonnegative function of a region in

space�



Lebesgue measure

Let f be a νmeasurable function �it has �nite measure�

taking no more than countably many distinct values

y�, y�, ..., yn, ...

Then by the Lebesgue integral of f over the set A denoted∫
A

f�x� dν,

we mean the quantity ∑
n

ynν�An�

where

An � {x � x ∈ A, f�x� � yn},

provided the series is absolutely convergent� The measure

ν is the Lebesgue measure�



Lebesgue integral

We can compute the integral∫
f�x�dx

by adding up the area under the red rectangles�
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Riemann integral

The more tradition form of the integral is the Riemann

integral� The intuition is that of limit of an in�nite sum of

in�nitesimally small rectangles�∫
A

f�x�dx �

∑
n

f�xn��x.

Integrals in the Riemann sense require continuous or piece

wise continuous functions� the Lebesgue from shown pre

viously relaxes this� Thus� the integral∫
�

�
f�x�dx

with f � ��,�� → IR de�ned as

f �



� if t is rational

� otherwise

does not exist in the Riemann sense�



Lebesgue�Stieltjes integral

Let F be a nondecreasing function de�ned on a closed

interval �a, b� and suppose F is continuous from the left at

every point �a, b�� F is called the generating function of

the LebesgueStieltjes measure νF �

The LebesgueStieltjes integral of a function f is denoted

by ∫ b

a
f�x� dF�x�

which is the Lebesgue integral∫

a,b�

f�x� dνF .

An example of dνF is a probability density p�x�dx� Then νF

would correspond to the cumulative distribution function�



Dense

Let A and B be subspaces of a metric space IR� A is said

to be dense in B if �A ⊂ B� �A is the closure of the subset

A� In particular A is said to be everywhere dense in IR if

�A � R�

A point x ∈ IR is called a contact point of a set A ∈ IR if

every neighborhood of x contains at least on point of A�

The set of all contact points of a set A denoted by �A is

called the closure of A�



Examples

�� The set of all rational points is dense in the real line�

�� The set of all polynomials with rational coe�cients is

dense in C�a, b��

�� Let K be a positive de�nite Radial Basis Function then

the functions

f�x� �
n∑

i��

ciK�x − xi�

is dense in L��

Note� A hypothesis space that is dense in L� is a desired

property of any approximation scheme�



Separable

A metric space is said to be separable if it has a countable

everywhere dense subset�

Examples�

�� The spaces IR�� IRn� L��a, b�� and C�a, b� are all separa

ble�

�� The set of real numbers is separable since the set of

rational numbers is a countable subset of the reals and

the set of rationals is is everywhere dense�



Completeness

A sequence of functions fn is fundamental if ∀ε > � ∃Nε

such that

∀n and m > Nε, ρ�fn, fm� < ε.

A metric space is complete if all fundamental sequences

converge to a point in the space�

C� L�� and L� are complete� That C� is not complete�

instead� can be seen through a counterexample�



Incompleteness of C�

Consider the sequence of functions �n � �,�, ...�

φn�t� �




−� if − � ≤ t < −�/n
nt if − �/n ≤ t < �/n

� if �/n ≤ t ≤ �

and assume that φn converges to a continuous function φ

in the metric of C�� Let

f�t� �

{
−� if − � ≤ t < �

� if � ≤ t ≤ �



Incompleteness of C� �cont��

Clearly�(∫

�f�t�− φ�t���dt

)�/�

≤
(∫

�f�t�− φn�t��
�dt

)�/�
�

(∫

�φn�t�− φ�t���dt

)�/�

.

Now the l�h�s� term is strictly positive� because f�t� is not

continuous� while for n → ∞ we have∫

�f�t�− φn�t��
�dt → �.

Therefore� contrary to what assumed� φn cannot converge

to φ in the metric of C��



Completion of a metric space

Given a metric space IR with closure �IR� a complete metric

space IR∗ is called a completion of IR if IR ⊂ IR∗ and

�IR � IR∗�

Examples

�� The space of real numbers is the completion of the

space of rational numbers�

�� Let K be a positive de�nite Radial Basis Function then

L� is the completion the space of functions

f�x� �

n∑
i��

ciK�x − xi�.



Compact spaces

A metric space is compact i� it is totally bounded and

complete�

Let IR be a metric space and ε any positive number� Then

a set A ⊂ IR is said to be an ε�net for a set M ⊂ IR if for

every x ∈ M � there is at least one point a ∈ A such that

ρ�x, a� < ε�

Given a metric space IR and a subset M ⊂ IR suppose M

has a �nite εnet for every ε > �� Then M is said to be

totally bounded�

A compact space has a �nite εnet for all ε > ��



Examples

�� In Euclidean nspace� IRn� total boundedness is equiv

alent to boundedness� If M ⊂ IR is bounded then M

is contained in some hypercube Q� We can partition

this hypercube into smaller hypercubes with sides of

length ε� The vertices of the little cubes from a �nite√
nε/�net of Q�

�� This is not true for in�nitedimensional spaces� The

unit sphere � in l� with constraint

∞∑
n��

x�n � �,

is bounded but not totally bounded� Consider the

points
e� � ��,�,�, ...�, e� � ��,�,�,�, ...�, ...,



where the nth coordinate of en is one and all others are

zero� These points lie on � but the distance between

any two is

√

�� So � cannot have a �nite εnet with

ε <
√

�/��

�� In�nitedimensional spaces maybe totally bounded� Let

� be the set of points x � �x�, ..., xn, ..� in l� satisfying

the inequalities

|x�| < �, |x�| <
�

�
, ..., |xn| <

�
�n−�, ...

The set � called the Hilbert cube is an example of

an in�nitedimensional totally bounded set� Given any

ε > �� choose n such that
�

�n��

<
ε

�

,



and with each point

x � �x�, ..., xn, ..�

is � associate the point

x∗ � �x�, ..., xn,�,�, ...�. ���

Then

ρ�x, x∗� �

√√√√ ∞∑
k�n��

x�k <

√√√√ ∞∑
k�n

�
�k

<

�
�n−� <

ε

�

.

The set �∗ of all points in � that satisfy ��� is totally

bounded since it is a bounded set in nspace�

�� The RKHS induced by a kernel K with an in�nite num

ber of positive eigenvalues that decay exponentially is

compact� In this case� our vector x � �x�, ..., xn, ..� can



be written in terms of its basis functions� the eigenvec

tors of K� Now for the RKHS norm to be bounded

|x�| < µ�, |x�| < µ�, ..., |xn| < µn, ...

and we know that µn � O�n−α�� So we have the case

analogous to the Hilbert cube and we can introduce a

point

x∗ � �x�, ..., xn,�,�, ...� ���

in a bounded nspace which can be made arbitrarily

close to x�



Compactness and continuity

A family � of functions φ de�ned on a closed interval �a, b�

is said to be uniformly bounded if for K > �
|φ�x�| < K

for all x ∈ �a, b� and all φ ∈ ��

A family � of functions φ is equicontinuous of for any given

ε > � there exists δ > � such that |x − y| < δ implies

|φ�x�− φ�y�| < ε

for all x, y ∈ �a, b� and all φ ∈ ��

Arzela�s theorem� A necessary and su�cient condition for

a family � of continuous functions de�ned on a closed

interval �a, b� to be �relatively� compact in C�a, b� is that �

is uniformly bounded and equicontinuous�



Linear space

A set L of elements x, y, z, ... is a linear space if the fol

lowing three axioms are satis�ed�

�� Any two elements x, y ∈ L uniquely determine a third

element in x � y ∈ L called the sum of x and y such

that

�a� x� y � y � x �commutativity�

�b� �x� y� � z � x� �y � z� �associativity�

�c� An element � ∈ L exists for which x�� � x for all

x ∈ L

�d� For every x ∈ L there exists an element −x ∈ L

with the property x� �−x� � �



�� Any number α and any element x ∈ L uniquely deter

mine an element αx ∈ L called the product such that

�a� α�βx� � β�αx�

�b� �x � x

�� Addition and multiplication follow two distributive laws

�a��α � β�x � αx� βx

�b�α�x � y� � αx� αy



Linear functional

A functional� F� is a function that maps another function

to a realvalue

F � f → IR.

A linear functional de�ned on a linear space L� satis�es the

following two properties

�� Additive� F�f � g� � F�f� � F�g� for all f, g ∈ L

�� Homogeneous� F�αf� � αF�f�



Examples

�� Let IRn be a real nspace with elements x � �x�, ..., xn��

and a � �a�, ..., an� be a �xed element in IRn� Then

F�x� �

n∑
i��

aixi

is a linear functional

�� The integral

F�f�x�� �
∫ b

a
f�x�p�x�dx

is a linear functional

�� Evaluation functional� another linear functional is the



Dirac delta function

δt�f�·�� � f�t�.

Which can be written

δt�f�·�� �

∫ b

a
f�x�δ�x − t�dx.

�� Evaluation functional� a positive de�nite kernel in a

RKHS

Ft�f�·�� � �Kt, f� � f�t�.

This is simply the reproducing property of the RKHS�



Normed space

A normed space is a linear �vector� space N in which a

norm is de�ned� A nonnegative function ‖ · ‖ is a norm i�

∀f, g ∈ N and α ∈ IR

�� ‖f‖ ≥ � and ‖f‖ � � i� f � ��

�� ‖f � g‖ ≤ ‖f‖� ‖g‖�

�� ‖αf‖ � |α| ‖f‖�

Note� if all conditions are satis�ed except ‖f‖ � � i� f � �

then the space has a seminorm instead of a norm�



Measuring distances in a normed space

In a normed space N � the distance ρ between f and g� or

a metric� can be de�ned as

ρ�f, g� � ‖g − f‖.

Note that ∀f, g, h ∈ N

�� ρ�f, g� � � i� f � g�

�� ρ�f, g� � ρ�g, f��

�� ρ�f, h� ≤ ρ�f, g� � ρ�g, h��



Example� continuous functions

A norm in C�a, b� can be established by de�ning

‖f‖ � max
a≤t≤b

|f�t�|.

The distance between two functions is then measured as

ρ�f, g� � max

a≤t≤b
|g�t�− f�t�|.

With this metric� C�a, b� is denoted as C�



Examples �cont��

A norm in L��a, b� can be established by de�ning

‖f‖ �

∫ b

a
|f�t�|dt.

The distance between two functions is then measured as

ρ�f, g� �

∫ b

a
|g�t�− f�t�|dt.

With this metric� L��a, b� is denoted as L��



Examples �cont��

A norm in C��a, b� and L��a, b� can be established by de�ning

‖f‖ �

(∫ b

a
f��t�dt

)�/�

.

The distance between two functions now becomes

ρ�f, g� �

(∫ b

a

�g�t�− f�t���dt

)

�/�

.

With this metric� C��a, b� and L��a, b� are denoted as C�

and L� respectively�



Convergence revisited

A sequence of functions fn converge to a function f almost

everywhere i�

lim

n→�∞
fn�x� � f�x�

A sequence of functions fn converge to a function f in

measure i� ∀ε > �

lim

n→�∞
µ{x � |fn�x�− f�x�| ≥ ε} � �.

A sequence of functions fn converge to a function f uni�

formly i�

lim

n→�∞

sup

x

�fn�x�− f�x�� � �



Relationship between di�erent types of

convergence

In the case of bounded intervals� uniform convergence �C�

implies

• convergence in the quadratic mean �L�� which implies

convergence in the mean �L�� which implies conver

gence in measure�

• almost everywhere convergence which implies conver

gence in measure�



Relationship between di�erent types of

convergence

That uniform convergence implies all other type of con

vergence is clear�

Consider L� over a bounded interval of width A� Keeping

in mind that the function g � � belongs to L� and that

‖g‖L� � A� convergence in the quadratic mean implies con

vergence in the mean because for every function f ∈ L� we

have

‖f‖L�
�

∫
A
|f |dx �

∫
A
|f | · �dx ≤ ‖f‖L�

‖�‖L�
� A‖f‖L�

and hence that f ∈ L��



Any convergence implies convergence in

measure

Convergence in measure is obtained by convergence in the

mean through Chebyshev�s inequality�

For any real random variable X and t > ��

P�|X| ≥ t� ≤ E�X�/t���

The proof that almost everywhere convergence implies

convergence in measure is somewhat more complicated�



Almost everywhere convergence does not

imply convergence in the �quadratic� mean

Over the interval ��,�� let fn be

fn �

{
n x ∈ ��,�/n�

� otherwise

Clearly fn → � for all x ∈ ��,��� Note that each fn is

not a continuous function and that the convergence is not

uniform �the closer the x to �� the larger n must be for

fn�x� � ��� However�∫
�

�
|fn�x�|dx � � for all n,

in both the Riemann or the Lebesgue sense�



Convergence in the quadratic mean does

not imply convergence at all�

Over the interval ��,��� for every n � �,�, ..., and i � �, ..., n

let

fn
i �

{

� i−�
n < x ≤ i

n

� otherwise

Clearly the sequence

f�� , f�� , f�� , ..., fn
� , fn

� , ...fn
n−�, f

n
n , fn��

� , ...,

converges to � both in measure and in the quadratic mean�

However� the same sequence does not converge for any x�



Convergence in probability and almost

surely

Any event with probability � is said to happen almost

surely� A sequence of real random variables Yn converges

almost surely to a random variable Y i� P�Yn → Y � � ��

A sequence Yn converges in probability to Y i� for every

ε > �� limn→∞ P�|Yn − Y | > ε� � �.

Convergence almost surely implies convergence in proba

bility�

A sequence X�, ...Xn satis�es the strong law of large num�

bers if for some constant c� �n
∑n

i��Xi converges to c almost

surely� The sequence satis�es the weak law of large num�

bers i� for some constant c� �

n

∑n
i��Xi converges to c in

probability�



Euclidean space

A Euclidean space is a linear �vector� space E in which a

dot product is de�ned� A real valued function �·, ·� is a dot

product i� ∀f, g, h ∈ E and α ∈ IR

�� �f, g� � �g, f��

�� �f � g, h� � �f, h∗� � �g, h� and �αf, g� � α�f, g��

�� �f, f� ≥ � and �f, f� � � i� f � ��

A Euclidean space becomes a normed linear space when

equipped with the norm

‖f‖ �

√

�f, f�.



Orthogonal systems and bases

A set of nonzero vectors {xα} in a Euclidean space E is

said to be an orthogonal system if

�xα, xβ� � � for α �� β

and an orthonormal system if

�xα, xβ� � � for α �� β

�xα, xβ� � � for α � β.

An orthogonal system {xα} is called an orthogonal basis

if it is complete �the smallest closed subspace containing

{xα} is the whole space E�� A complete orthonormal sys

tem is called an orthonormal basis�



Examples

�� IRn is a real nspace� the set of ntuples x � �x�, ..., xn��

y � �y�, ..., yn�� If we de�ne the dot product as

�x, y� �

n∑
i��

xiyi

we get Euclidean nspace� The corresponding norms

and distances in IRn are

‖x‖ �

√√√√ n∑
i��

x�i

ρ�x, y� � ‖x − y‖ �

√√√√ n∑
i��

�xi − yi�
�.



The vectors

e� � ��,�,�, ....,��

e� � ��,�,�, ....,��

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
en � ��,�,�, ....,��

form an orthonormal basis in IRn�

�� The space l� with elements x � �x�, x�, ..., xn, ....�� y �

�y�, y�, ..., yn, ....�� ���� where

∞∑
i��

x�i < ∞,
∞∑

i��

y�i < ∞, ..., ...,

becomes an in�nitedimensional Euclidean space when

equipped with the dot product

�x, y� �

∞∑
i��

xiyi.



The simplest orthonormal basis in l� consists of vectors

e� � ��,�,�,�, ...�

e� � ��,�,�,�, ...�

e � ��,�,�,�, ...�

e� � ��,�,�,�, ...�

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

there are an in�nite number of these bases�

�� The space C��a, b� consisting of all continuous functions

on �a, b� equipped with the dot product

�f, g� �

∫ b

a
f�t�g�t�dt

is another example of Euclidean space�



An important example of orthogonal bases in this space

is the following set of functions

�, cos
�πnt

b − a
, sin

�πnt

b − a

�n � �,�, ...�.



Hilbert space

A Hilbert space is a Euclidean space that is complete�

separable� and generally in�nite�dimensional�

A Hilbert space is a set H of elements f, g, ... for which

�� H is a Euclidean space equipped with a scalar product

�� H is complete with respect to metric ρ�f, g� � ‖f − g‖

�� H is separable �contains a countable everywhere dense

subset�

�� �generally� H is in�nitedimensional�

l� and L� are examples of Hilbert spaces�



The δ function

We now consider the functional which returns the value of

f ∈ C at the location t �an evaluation functional��

��f� � f�t�.

Note that this functional is degenerate because it does not

depend on the entire function f � but only on the value of

f at the speci�c location t�

The δ�t� is not a functional but a distribution�



The δ function �cont��

The same functional can be written as

��f� � f�t� �

∫ ∞

−∞
f�s�δ�s − t�ds.

No ordinary function exists �in L�� that behaves like δ�t��

one can think of δ�t� as a function that vanishes for t �� �

and takes in�nite value at t � � in such a way that∫ ∞

−∞
δ�t�dt � �.



The δ function �cont��

The δ function can be seen as the limit of a sequence of

ordinary functions� For example� if

rε�t� �

�

ε

�U�t�− U�t − ε��

is a rectangular pulse of unit area� consider the limit

lim

ε→�

∫ ∞

−∞
f�s�rε�s − t�ds.

By de�nition of rε this gives

lim

ε→�
�

ε

∫ t�ε

t
f�s�ds � f�t�

because f is continuous�



Fourier Transform

The Fourier Transform of a real valued function f ∈ L� is

the complex valued function  f�ω� de�ned as

F�f�x�� �  f�ω� �

∫
�∞

−∞
f�x� e−jωxdx.

The FT  f can be thought of as a representation of the

information content of f�x�� The original function f can

be obtained through the inverse Fourier Transform as

f�x� �

�
�π

∫
�∞

−∞

 f�ω� ejωxdω.



Properties

f�at� ⇔ �

|a|
F

(
ω

a

)

f∗�t� ⇔ F ∗�ω�

F�t� ⇔ �πf�−ω�

f�t − t	� ⇔ F�ω�e−jt�ω

f�t�ejω�t ⇔ F�ω − ω	�

dnf�t�

dtn
⇔ �jω�nF�ω�

�−jt�nf�t� ⇔ dnF�ω�

dωn∫ ∞

−∞
f��τ�f��t − τ�dτ ⇔ F��ω�F��ω�∫ ∞

−∞
f∗�τ�f�t � τ�dτ ⇔ |F�ω�|�



Properties

The box and the sinc

f�t� � � if − a ≤ t ≤ a and � otherwise

F�ω� �

� sin�aω�

ω
.
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Properties

The Gaussian

f�t� � e−at�

F�ω� �

√
π

a
e−ω�/�a.
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Properties

The Laplacian and Cauchy distributions
f�t� � e−a|t|

F�ω� �

�a

a�� ω�
.
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Fourier Transform in the distribution sense

With due care� the Fourier Transform can be de�ned in

the distribution sense� For example� we have

• δ�x� ⇐⇒ �

• cos�ω�x� ⇐⇒ π�δ�ω − ω�� � δ�ω � ω���

• sin�ω�x� ⇐⇒ jπ�δ�ω � ω��− δ�ω − ω���

• U�x� ⇐⇒ πδ�ω�− j/ω

• |x| ⇐⇒ −�/ω�



Parseval�s formula

If f is also square integrable� the Fourier Transform leaves

the norm of f unchanged� Parseval�s formula states that∫

�∞

−∞
|f�x�|�dx �

�
�π

∫
�∞

−∞
| f�ω�|�dω.



Fourier Transforms of functions and

distributions

The following are Fourier transforms of some functions and

distributions

• f�x� � δ�x� ⇐⇒  f�ω� � �
• f�x� � cos�ω�x� ⇐⇒  f�ω� � π�δ�ω − ω�� � δ�ω � ω���

• f�x� � sin�ω�x� ⇐⇒  f�ω� � iπ�δ�ω � ω��− δ�ω − ω���

• f�x� � U�x� ⇐⇒  f�ω� � πδ�ω�− i/ω

• f�x� � |x| ⇐⇒  f�ω� � −�/ω��



Functional di�erentiation

In analogy with standard calculus� the minimum of a func

tional can be obtained by setting equal to zero the deriva�

tive of the functional� If the functional depends on the

derivatives of the unknown function� a further step is re

quired �as the unknown function has to be found as the

solution of a di�erential equation��



Functional di�erentiation

The derivative of a functional ��f� is de�ned

D��f�

Df�s�
� lim

h→�
��f�t� � hδ�t − s��−��f�t��

h
.

Note that the derivative depends on the location s� For

example� if ��f� �

∫

�∞
−∞ f�t�g�t�dt

D��f�

Df�s�
�

∫
�∞

−∞
g�t�δ�t − s�dt � g�s�.



Intuition

Let f � �a, b� → IR� a � x� and b � xN� The intuition behind

this de�nition is that the functional ��f� can be thought

of as the limit for N → ∞ of the function of N variables

�N � �N�f�, f�, ..., fN�

with f� � f�x��� f� � f�x��� ��� fN � f�xN��

For N → ∞� � depends on the entire function f � The

dependence on the location brought in by the δ function

corresponds to the partial derivative with respect to the

variable fk�



Functional di�erentiation �cont��

If ��f� � f�t�� the derivative is simply
D��f�

Df�s�
�

Df�t�
Df�s�

� δ�t − s�.

Similarly to ordinary calculus� the minimum of a functional

��f� is obtained as the function solution to the equation

D��f�

Df�s�
� �.



Random variables

We are given a random variable ξ ∼ F � To de�ne a random

variable you need three things�

�� a set to draw the values from� we�ll call this !

�� a σalgebra of subsets of !� we�ll call this B

�� a probability measure F on B with F�!� � �

So �!,B, F� is a probability space and a random variable

is a masurable function X � ! → IR�



Expectations

Given a random variable ξ ∼ F the expectation is

IEξ ≡
∫

ξdF.

Similarly the variance of the random variable σ��ξ� is

var�ξ� ≡ IE�ξ − IEξ��.



Law of large numbers

The law of large numbers tells us�

lim

→∞

�



∑
i��

I
f�xi���yi�

→ IEx,yI
f�x� ��y�.

If σ → ∞ the Central Limit Theorem states�

√
��

∑
I − IEI�

√

varI
→ N��,��,

which implies ∣∣∣∣�
∑

I − IEI

∣∣∣∣ ∼ k√

.

If σ → c the Central Limit Theorem implies∣∣∣∣�
∑

I − IEI

∣∣∣∣ ∼ k


.


