Manifold Regularization

9.520 Class 06, 27 February 2006

Andrea Caponnetto

About this class

Goal To analyze the limits of learning from examples in high dimensional spaces. To introduce the semi-supervised setting and the use of unlabeled data to learn the intrinsic geometry of a problem. To define Riemannian Manifolds, Manifold Laplacians, Graph Laplacians. To introduce a new class of algorithms based on Manifold Regularization (LapRLS, LapSVM).

Unlabeled data

Why using unlabeled data?

- labeling is often an "expensive" process
- semi-supervised learning is the natural setting for human learning

Semi-supervised setting

u i.i.d. samples drawn on X from the marginal distribution $p(x)$

$$
\left\{x_{1}, x_{2}, \ldots, x_{u}\right\}
$$

only n of which endowed with labels drawn from the conditional distributions $p(y \mid x)$

$$
\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}
$$

The extra $u-n$ unlabeled samples give additional information about the marginal distribution $p(x)$.

The importance of unlabeled data

Curse of dimensionality and $p(x)$

Abstract

Assume X is the D-dimensional hypercube $[0,1]^{D}$. The worst case scenario corresponds to uniform marginal distribution $p(x)$.

Two perspectives on curse of dimensionality:

- As d increases, local techniques (eg nearest neighbors) become rapidly ineffective.
- Minimax results show that rates of convergence of empirical estimators to optimal solutions of known smoothness, depend critically on D

Curse of dimensionality and $\mathrm{k}-\mathrm{NN}$

- It would seem that with a reasonably large set of training data, we could always approximate the conditional expectation by k-nearest-neighbor averaging.
- We should be able to find a fairly large set of observations close to any $x \in[0,1]^{D}$ and average them.
- This approach and our intuition breaks down in high dimensions.

Sparse sampling in high dimension

Suppose we send out a cubical neighborhood about one vertex to capture a fraction r of the observations. Since this corresponds to a fraction r of the unit volume, the expected edge length will be

$$
e_{D}(r)=r^{\frac{1}{D}}
$$

Already in ten dimensions $e_{10}(0.01)=0.63$, that is to capture 1% of the data, we must cover 63% of the range of each input variable!

No more "local" neighborhoods!

Distance vs volume in high dimensions

Curse of dimensionality and smoothness

Assuming that the target function f^{*} (in the squared loss case) belongs to the Sobolev space

$$
W_{s}^{2}\left([0,1]^{D}\right)=\left\{\left.f \in L_{2}\left([0,1]^{D}\right)\left|\sum_{\omega \in Z^{d}}\|\omega\|^{2 s}\right| \widehat{f}(\omega)\right|^{2}<+\infty\right\}
$$

it is possible to show that *

$$
\sup _{\mu, f^{*} \in W_{s}^{2}} \mathbb{E}_{S}\left(I\left[f_{S}\right]-I\left[f^{*}\right]\right)>C n^{-\frac{s}{D}}
$$

More smoothness $s \Rightarrow$ faster rate of convergence

Higher dimension $D \Rightarrow$ slower rate of convergence

[^0]
Intrinsic dimensionality

Raw format of natural data is often high dimensional, but in many cases it is the outcome of some process involving only few degrees of freedom.

Examples:

- Acoustic Phonetics \Rightarrow vocal tract can be modelled as a sequence of few tubes.
- Facial Expressions \Rightarrow tonus of several facial muscles control facial expression.
- Pose Variations \Rightarrow several joint angles control the combined pose of the elbow-wrist-finger system.

Smoothness assumption: y 's are "smooth" relative to natural degrees of freedom, not relative to the raw format.

Manifold embedding

Riemannian Manifolds

A d-dimensional manifold

$$
\mathcal{M}=\bigcup_{\alpha} U_{\alpha}
$$

is a mathematical object that generalized domains in \mathbb{R}^{d}.
Each one of the "patches" U_{α} which cover \mathcal{M} is endowed with a system of coordinates

$$
\alpha: U_{\alpha} \rightarrow \mathbb{R}^{d}
$$

If two patches U_{α} and U_{β}, overlap, the transition functions

$$
\beta \circ \alpha^{-1}: \alpha\left(U_{\alpha} \bigcap U_{\beta}\right) \rightarrow \mathbb{R}^{d}
$$

must be smooth (eg. infinitely differentiable).

- The Riemannian Manifold inherits from its local system of coordinates, most geometrical notions available on \mathbb{R}^{d} : metrics, angles, volumes, etc.

Manifold's charts

Differentiation over manifolds

Since each point x over \mathcal{M} is equipped with a local system of coordinates in \mathbb{R}^{d} (its tangent space), all differential operators defined on functions over \mathbb{R}^{d}, can be extended to analogous operators on functions over \mathcal{M}.

Gradient: $\nabla f(\mathrm{x})=\left(\frac{\partial}{\partial x_{1}} f(\mathrm{x}), \ldots, \frac{\partial}{\partial x_{d}} f(\mathrm{x})\right) \Rightarrow \nabla_{\mathcal{M}} f(x)$

Laplacian: $\triangle f(\mathrm{x})=-\frac{\partial^{2}}{\partial x_{1}^{2}} f(\mathrm{x})-\cdots-\frac{\partial^{2}}{\partial x_{d}^{2}} f(\mathrm{x}) \Rightarrow \triangle_{\mathcal{M}} f(x)$

Measuring smoothness over \mathcal{M}

Given $f: \mathcal{M} \rightarrow \mathbb{R}$

- $\nabla_{\mathcal{M}} f(x)$ represents amplitude and direction of variation around x
- $S(f)=\int_{\mathcal{M}}\left\|\nabla_{\mathcal{M}} f\right\|^{2}$ is a global measure of smoothness for f
- Stokes' theorem (generalization of integration by parts) links gradient and Laplacian

$$
S(f)=\int_{\mathcal{M}}\left\|\nabla_{\mathcal{M}} f(x)\right\|^{2}=\int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x)
$$

Example: the circle S^{1}

$\mathcal{M}:$ circle with angular coordinate $\theta \in[0,2 \pi)$

$$
\nabla_{\mathcal{M}} f=\frac{\partial}{\partial \theta} f, \quad \triangle_{\mathcal{M}} f=-\frac{\partial^{2}}{\partial \theta^{2}} f
$$

integration by parts: $\int_{0}^{2 \pi}\left(\frac{\partial}{\partial \theta} f(\theta)\right)^{2} d \theta=-\int_{0}^{2 \pi} f(\theta) \frac{\partial^{2}}{\partial \theta^{2}} f(\theta) d \theta$
eigensystem of $\triangle_{\mathcal{M}}$:

$$
\triangle_{\mathcal{M}} \phi_{k}=\lambda_{k} \phi_{k}
$$

$$
\phi_{k}(\theta)=\sin k \theta, \quad \cos k \theta, \quad \lambda_{k}=k^{2} \quad k \in \mathbb{N}
$$

Manifold regularization

A new class of techniques which extend standard Tikhonov regularization over RKHS, introducing the additional regularizer $\|f\|_{I}^{2}=$ $\int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x)$ to enforce smoothness of solutions relative to the underlying manifold

$$
f^{*}=\arg \min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V\left(f\left(x_{i}\right), y_{i}\right)+\lambda_{A}\|f\|_{K}^{2}+\lambda_{I} \int_{\mathcal{M}} f \triangle_{\mathcal{M}} f
$$

- λ_{I} controls the complexity of the solution in the intrinsic geometry of \mathcal{M}.
- λ_{A} controls the complexity of the solution in the ambient space.

[^1]
Manifold regularization (cont.)

Other natural choices of $\|\cdot\|_{I}^{2}$ exist

- Iterated Laplacians $\int_{\mathcal{M}} f \triangle_{\mathcal{M}}^{s} f$ and their linear combinations. These smoothness penalties are related to Sobolev spaces

$$
\int f(x) \triangle_{\mathcal{M}}^{s} f(x) \approx \sum_{\omega \in Z^{a}}\|\omega\|^{2 s}|\widehat{f}(\omega)|^{2}
$$

- Frobenius norm of the Hessian (the matrix of second derivatives of f) *
- Diffusion regularizers $\int_{\mathcal{M}} f e^{t \Delta}(f)$. The semigroup of smoothing operators $G=\left\{e^{-t \Delta_{\mathcal{M}}} \mid t>0\right\}$ corresponds to the process of diffusion (Brownian motion) on the manifold.

[^2]
Laplacian and diffusion

- If M is compact, the operator $\triangle_{\mathcal{M}}$ has a countable sequence of eigenvectors ϕ_{k} (with non-negative eigenvalues λ_{k}), which is a complete system of $L_{2}(\mathcal{M})$. If M is connected, the constant function is the only eigenvector corresponding to null eigenvalue.
- The function of operator $e^{-t \triangle_{\mathcal{M}}}$, is defined by the eigensystem $\left(e^{-t \lambda_{k}}, \phi_{k}\right), k \in \mathbb{N}$.
- the diffusion stabilizer $\|f\|_{I}^{2}=\int_{\mathcal{M}} f e^{t \triangle_{\mathcal{M}}}(f)$ is the squared norm of RKHS with kernel equal to Green's function of heat equation

$$
\frac{\partial T}{\partial t}=-\triangle_{\mathcal{M}} T
$$

Laplacian and diffusion (cont.)

1. By Taylor expansion of $T(x, t)$ around $t=0$

$$
\begin{aligned}
T(x, t) & =T(x, 0)+t \frac{\partial}{\partial t} T(x, 0)+\cdots+\frac{1}{k} t^{k} \frac{\partial^{k}}{\partial t^{k}} T(x, 0)+\ldots \\
& =e^{-t \Delta} T(x, 0)=\int K_{t}\left(x, x^{\prime}\right) T\left(x^{\prime}, 0\right) d x^{\prime}=L_{K} T\left(x^{\prime}, 0\right)
\end{aligned}
$$

2. For small $t>0$, the Green's function is a sharp gaussian

$$
K_{t}\left(x, x^{\prime}\right) \approx e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{t}}
$$

3. Recalling relation of integral operator L_{K} and RKHS norm, we get

$$
\|f\|_{I}^{2}=\int f e^{t \Delta}(f)=\int f L_{K}^{-1}(f)=\|f\|_{K}^{2}
$$

An empirical proxy of the manifold

We cannot compute the intrinsic smoothness penalty

$$
\|f\|_{I}^{2}=\int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x)
$$

because we don't know the manifold \mathcal{M} and the embedding

$$
\Phi: \mathcal{M} \rightarrow \mathbb{R}^{D}
$$

But we assume that the unlabeled samples are drawn i.i.d. from the uniform probability distribution over \mathcal{M} and then mapped into \mathbb{R}^{D} by Φ

Neighborhood graph

Our proxy of the manifold is a weighted neighborhood graph $G=(V, E, W)$, with vertices V given by the points $\left\{x_{1}, x_{2}, \ldots, x_{u}\right\}$, edges E defined by one of the two following adjacency rules

- connect x_{i} to its k nearest neighborhoods
- connect x_{i} to ϵ-close points
and weights $W_{i j}$ associated to two connected vertices

$$
W_{i j}=e^{-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{\epsilon}}
$$

Note: computational complexity $O\left(u^{2}\right)$

Neighborhood graph (cont.)

The graph Laplacian

The graph Laplacian over the weighted neighborhood graph (G, E, W) is the matrix

$$
\mathbf{L}_{i j}=\mathbf{D}_{i i}-\mathbf{W}_{i j}, \quad \mathbf{D}_{i i}=\sum_{j} \mathbf{W}_{i j}
$$

L is the discrete counterpart of the manifold Laplacian $\triangle_{\mathcal{M}}$

$$
\mathbf{f}^{T} \mathbf{L} \mathbf{f}=\sum_{i, j=1}^{n} \mathbf{W}_{i j}\left(\mathbf{f}_{i}-\mathbf{f}_{j}\right)^{2} \approx \int_{\mathcal{M}}\|\nabla f\|^{2} d p
$$

Analogous properties of the eigensystem: nonnegative spectrum, null space

Looking for rigorous convergence results

A convergence theorem *

Operator \mathcal{L} : "out-of-sample extension" of the graph Laplacian L

$$
\mathcal{L}(f)(x)=\sum_{i}\left(f(x)-f\left(x_{i}\right)\right) e^{-\frac{\left\|x-x_{i}\right\|^{2}}{\epsilon}} \quad x \in X, \quad f: X \rightarrow \mathbb{R}
$$

Theorem: Let the u data points $\left\{x_{1}, \ldots, x_{u}\right\}$ be sampled from the uniform distribution over the embedded d dimensional manifold \mathcal{M}. Put $\epsilon=u^{-\alpha}$, with $0<\alpha<\frac{1}{2+d}$. Then for all $f \in C^{\infty}$ and $x \in X$, there is a constant C, s.t. in probability,

$$
\lim _{u \rightarrow \infty} C \frac{\epsilon^{-\frac{d+2}{2}}}{u} \mathcal{L}(f)(x)=\triangle_{\mathcal{M}} f(x)
$$

Note: also stronger forms of convergence have been proved.
*Belkin, Niyogi, 05

Laplacian-based regularization algorithms

Replacing the unknown manifold Laplacian with the graph Laplacian $\|f\|_{I}^{2}=\frac{1}{u^{2}} \mathbf{f}^{T} \mathbf{L f}$, where \mathbf{f} is the vector $\left[f\left(x_{1}\right), \ldots, f\left(x_{u}\right)\right]$, we get the minimization problem

$$
f^{*}=\arg \min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V\left(f\left(x_{i}\right), y_{i}\right)+\lambda_{A}\|f\|_{K}^{2}+\frac{\lambda_{I}}{u^{2}} \mathbf{f}^{T} \mathbf{L f}
$$

- $\lambda_{I}=0$: standard regularization (RLS and SVM)
- $\lambda_{A} \rightarrow 0$: out-of-sample extension for Graph Regularization
- $n=0$: unsupervised learning, Spectral Clustering
*Belkin, Niyogi, Sindhwani, 04

The Representer Theorem

Using the same type of reasoning used in Class 3, a Representer Theorem can be easily proved for the solutions of Manifold Regularization algorithms.

The expansion range over all the supervised and unsupervised data points

$$
f(x)=\sum_{j=1}^{u} c_{j} K\left(x, x_{j}\right)
$$

LapRLS

Generalizes the usual RLS algorithm to the semi-supervised setting.

Set $V(w, y)=(w-y)^{2}$ in the general functional.

By the representer theorem, the minimization problem can be restated as follows
$\mathbf{c}^{*}=\arg \min _{\mathbf{c} \in \mathbb{R}^{u}} \frac{1}{n}(\mathbf{y}-\mathbf{J K c})^{T}(\mathbf{y}-\mathbf{J K c})+\lambda_{A} \mathbf{c}^{T} \mathbf{K} \mathbf{c}+\frac{\lambda_{I}}{u^{2}} \mathbf{c}^{T} \mathbf{K L K} \mathbf{c}$, where \mathbf{y} is the u-dimensional vector $\left(y_{1}, \ldots, y_{n}, 0, \ldots, 0\right)$, and \mathbf{J} is the $u \times u$ matrix $\operatorname{diag}(1, \ldots, 1,0, \ldots, 0)$.

LapRLS (cont.)

The functional is differentiable, strictly convex and coercive. The derivative of the object function vanishes at the minimizer \mathbf{c}^{*}

$$
\frac{1}{n} \mathbf{K J}\left(\mathbf{y}-\mathbf{J K c}^{*}\right)+\left(\lambda_{A} \mathbf{K}+\frac{\lambda_{I} n}{u^{2}} \mathbf{K L K}\right) \mathbf{c}^{*}=0 .
$$

From the relation above and noticing that due to the positivity of λ_{A}, the matrix \mathbf{M} defined below, is invertible, we get

$$
\mathbf{c}^{*}=\mathrm{M}^{-1} \mathbf{y}
$$

where

$$
\mathbf{M}=\mathbf{J K}+\lambda_{A} n \mathbf{I}+\frac{\lambda_{I} n^{2}}{u^{2}} \mathbf{L K}
$$

LapSVM

Generalizes the usual SVM algorithm to the semi-supervised setting.

Set $V(w, y)=(1-y w)_{+}$in the general functional above.

Applying the representer theorem, introducing slack variables and adding the unpenalized bias term b, we easily get the primal problem

$$
\begin{array}{rcl}
\mathbf{c}^{*}=\arg \min _{\mathbf{c} \in \mathbb{R}^{u}, \xi \in \mathbb{R}^{n}} & \frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda_{A} \mathbf{c}^{T} \mathbf{K} \mathbf{c}+\frac{\lambda_{I}}{u^{2}} \mathbf{c}^{T} \mathbf{K L K} \mathbf{c} & \\
\text { subject to }: & y_{i}\left(\sum_{j=1}^{u} c_{j} K\left(x_{i}, x_{j}\right)+b\right) \geq 1-\xi_{i} & i=1, \ldots, n \\
\xi_{i} \geq 0 & i=1, \ldots, n
\end{array}
$$

LapSVM: forming the Lagrangian

As in the analysis of SVM, we derive the Wolfe dual quadratic program using Lagrange multiplier techniques:

$$
\begin{aligned}
L(\mathbf{c}, \xi, b, \alpha, \zeta)= & \frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\frac{1}{2} \mathbf{c}^{T}\left(2 \lambda_{A} \mathbf{K}+2 \frac{\lambda_{I}}{u^{2}} \mathbf{K L K}\right) \mathbf{c} \\
& -\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left\{\sum_{j=1}^{u} c_{j} K\left(x_{i}, x_{j}\right)+b\right\}-1+\xi_{i}\right) \\
& -\sum_{i=1}^{n} \zeta_{i} \xi_{i}
\end{aligned}
$$

We want to minimize L with respect to c, b, and ξ, and maximize L with respect to α and ζ, subject to the constraints of the primal problem and nonnegativity constraints on α and ζ.

LapSVM: eliminating b and ξ

$$
\begin{aligned}
\frac{\partial L}{\partial b}=0 & \Longrightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
\frac{\partial L}{\partial \xi_{i}}=0 & \Longrightarrow \frac{1}{n}-\alpha_{i}-\zeta_{i}=0 \\
& \Longrightarrow 0 \leq \alpha_{i} \leq \frac{1}{n}
\end{aligned}
$$

We write a reduced Lagrangian in terms of the remaining variables:
$L^{R}(\mathbf{c}, \alpha)=\frac{1}{2} \mathbf{c}^{T}\left(2 \lambda_{A} \mathbf{K}+2 \frac{\lambda_{I}}{u^{2}} \mathbf{K L K}\right) \mathbf{c}-\mathbf{c}^{T} \mathbf{K} \mathbf{J}^{T} \mathbf{Y} \alpha+\sum_{i=1}^{n} \alpha_{i}$,
where \mathbf{J} is the $n \times u$ matrix $(\mathbf{I} \mathbf{0})$ with \mathbf{I} the $n \times n$ identity matrix and $\mathbf{Y}=\operatorname{diag}(\mathbf{y})$.

LapSVM: eliminating c

Assuming the K matrix is invertible,

$$
\begin{aligned}
\frac{\partial L^{R}}{\partial \mathbf{c}}=0 & \Longrightarrow\left(2 \lambda_{A} \mathbf{K}+2 \frac{\lambda_{I}}{u^{2}} \mathbf{K} \mathbf{L K}\right) \mathbf{c}-\mathbf{K J}^{T} \mathbf{Y} \alpha=0 \\
& \Longrightarrow \mathbf{c}=\left(2 \lambda_{A} \mathbf{I}+2 \frac{\lambda_{I}}{u^{2}} \mathbf{L K}\right)^{-1} \mathbf{J}^{T} \mathbf{Y} \alpha
\end{aligned}
$$

Note that the relationship between \mathbf{c} and α is no longer as simple as in the SVM algorithm.

LapSVM: the dual program

Substituting in our expression for c, we are left with the following "dual" program:

$$
\begin{array}{rc}
\alpha^{*}=\arg \max _{\alpha \in \mathbb{R}^{\mathbf{n}}} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \alpha^{T} \mathbf{Q} \alpha \\
\text { subject to : } & \sum_{i=1}^{n} y_{i} \alpha_{i}=0 \\
& 0 \leq \alpha_{i} \leq \frac{1}{n} \quad i=1, \ldots, n
\end{array}
$$

Here, Q is the matrix defined by

$$
Q=\mathbf{Y} \mathbf{J K}\left(2 \lambda_{A} \mathbf{I}+2 \frac{\lambda_{I}}{u^{2}} \mathbf{L K}\right)^{-1} \mathbf{J}^{T} \mathbf{Y}
$$

One can use a standard SVM solver with the matrix Q above, hence compute c solving a linear system.

Numerical experiments

- Two Moons Dataset
- Handwritten Digit Recognition
- Spoken Letter Recognition
*http://manifold.cs.uchicago.edu/manifold_regularization

[^0]: *A Distribution-Free Theory of Nonparametric Regression, Gyorfi

[^1]: *Belkin, Niyogi, Sindhwani, 04

[^2]: *Hessian Eigenmaps; Donoho, Grimes 03

