Bagging and Boosting

9.520 Class 10, 13 March 2006

Sasha Rakhlin

Plan

- Bagging and sub-sampling methods
- Bias-Variance and stability for bagging
- Boosting and correlations of machines
- Gradient descent view of boosting

Bagging (Bootstrap AGGregatING)

Given a training set $D=\left\{\left(\mathrm{x}_{1}, y_{1}\right), \ldots\left(\mathrm{x}_{n}, y_{n}\right)\right\}$,

- sample T sets of n elements from D (with replacement) $D_{1}, D_{2}, \ldots D_{T} \rightarrow T$ quasi replica training sets;
- train a machine on each $D_{i}, i=1, \ldots, T$ and obtain a sequence of T outputs $f_{1}(\mathrm{x}), \ldots f_{T}(\mathrm{x})$.

Bagging (cont.)

The final aggregate classifier can be

- for regression

$$
\bar{f}(\mathrm{x})=\sum_{i=1}^{T} f_{i}(\mathrm{x})
$$

the average of f_{i} for $i=1, \ldots, T$;

- for classification

$$
\bar{f}(\mathrm{x})=\operatorname{sign}\left(\sum_{i=1}^{T} f_{i}(\mathrm{x})\right)
$$

or the majority vote

$$
\bar{f}(\mathrm{x})=\operatorname{sign}\left(\sum_{i=1}^{T} \operatorname{sign}\left(f_{i}(\mathrm{x})\right)\right)
$$

Variation I: Sub-sampling methods

- "Standard" bagging: each of the T subsamples has size n and created with replacement.
- "Sub-bagging": create T subsamples of size α only $(\alpha<$ $n)$.
- No replacement: same as bagging or sub-bagging, but using sampling without replacement
- Overlap vs non-overlap: Should the T subsamples overlap? i.e. create T subsamples each with $\frac{n}{T}$ training data.

Bias - Variance for Regression (Breiman 1996)

Let

$$
I[f]=\int(f(\mathbf{x})-y)^{2} p(\mathbf{x}, y) d \mathbf{x} d y
$$

be the expected risk and f_{0} the regression function. With $\bar{f}(\mathrm{x})=E_{S} f_{S}(\mathrm{x})$, if we define the bias as

$$
\int\left(f_{0}(\mathbf{x})-\bar{f}(\mathbf{x})\right)^{2} p(\mathbf{x}) d \mathbf{x}
$$

and the variance as

$$
E_{S}\left\{\int\left(f_{S}(\mathbf{x})-\bar{f}(\mathbf{x})\right)^{2} p(\mathrm{x}) d \mathbf{x}\right\}
$$

we have the decomposition

$$
E_{S}\left\{I\left[f_{S}\right]\right\}=I\left[f_{0}\right]+\text { bias }+ \text { variance } .
$$

Bagging reduces variance (Intuition)

If each single classifier is unstable - that is, it has high variance, the aggregated classifier \bar{f} has a smaller variance than a single original classifier.

The aggregated classifier \bar{f} can be thought of as an approximation to the true average f obtained by replacing the probability distribution p with the bootstrap approximation to p obtained concentrating mass $1 / n$ at each point (x_{i}, y_{i}).

Variation II: weighting and combining alternatives

- No subsampling, but instead each machine uses different weights on the training data.
- Instead of equal voting, use weighted voting.
- Instead of voting, combine using other schemes.

Weak and strong learners

Kearns and Valiant in 1988/1989 asked if there exist two types of hypothesis spaces of classifiers.

- Strong learners: Given a large enough dataset the classifier can arbitrarily accurately learn the target function $1-\tau$
- Weak learners: Given a large enough dataset the classifier can barely learn the target function $\frac{1}{2}+\tau$

The hypothesis boosting problem: are the above equivalent?

The original Boosting (Schapire, 1990): For Classification Only

1. Train a first classifier f_{1} on a training set drawn from a probability $p(\mathrm{x}, y)$. Let ϵ_{1} be the obtained training performance;
2. Train a second classifier f_{2} on a training set drawn from a probability $p_{2}(\mathbf{x}, y)$ such that it has half its measure on the event that h_{1} makes a mistake and half on the rest. Let ϵ_{2} be the obtained performance;
3. Train a third classifier f_{3} on disagreements of the first two - that is, drawn from a probability $p_{3}(\mathbf{x}, y)$ which has its support on the event that h_{1} and h_{2} disagree. Let ϵ_{3} be the obtained performance.

Boosting (cont.)

Main result: If $\epsilon_{i}<p$ for all i, the boosted hypothesis

$$
g=\text { MajorityVote }\left(f_{1}, f_{2}, f_{3}\right)
$$

has training performance no worse than $\epsilon=3 p^{2}-2 p^{3}$

Adaboost (Freund and Schapire, 1996)

The idea is of adaptively resampling the data

- Maintain a probability distribution over training set;
- Generate a sequence of classifiers in which the "next" classifier focuses on sample where the "previous" classifier failed;
- Weigh machines according to their performance.

Adaboost

Given: a class $\mathcal{F}=\{f: \mathcal{X} \mapsto\{-1,1\}\}$ of weak learners and the data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}, y_{i} \in\{-1,1\}$. Initialize the weights as $w_{1}(i)=1 / n$. For $t=1, \ldots T$:

1. Find a weak learner f_{t} based on weights $w_{t}(i)$;
2. Compute the weighted error $\epsilon_{t}=\sum_{i=1}^{n} w_{t}(i) I\left(y_{i} \neq f_{t}\left(x_{i}\right)\right)$;
3. Compute the importance of f_{t} as $\alpha_{t}=1 / 2 \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$;
4. Update the distribution $w_{t+1}(i)=\frac{w_{t}(i) e^{-\alpha_{t} y_{i} f_{t}\left(x_{i}\right)}}{Z_{t}}$, $Z_{t}=\sum_{i=1}^{n} w_{t}(i) e^{-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)}$.

Adaboost (cont.)

Adopt as final hypothesis

$$
g(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} f_{t}(\mathrm{x})\right)
$$

Theory of Boosting

We define the margin of $\left(x_{i}, y_{i}\right)$ according to the real valued function g to be

$$
\operatorname{margin}\left(x_{i}, y_{i}\right)=y_{i} g\left(x_{i}\right)
$$

Note that this notion of margin is different from the SVM margin. This defines a margin for each training point!

Performance of Adaboost

Theorem: Let $\gamma_{t}=1 / 2-\epsilon_{t}$ (how much better f_{t} is on the weighted sample than tossing a coin). Then

$$
\frac{1}{n} \sum_{i=1}^{n} I\left(y_{i} g\left(x_{i}\right)<0\right) \leq \prod_{t=1}^{T} \sqrt{1-4 \gamma_{t}^{2}}
$$

Gradient descent view of boosting

We would like to minimize

$$
\frac{1}{n} \sum_{i=1}^{n} I\left(y_{i} g\left(x_{i}\right)<0\right)
$$

over the linear span of some base class \mathcal{F}. Think of \mathcal{F} as the weak learners.

Two problems: a) linear span of \mathcal{F} can be huge and searching for the minimizer directly is intractable. b) the indicator is non-convex and the problem can be shown to be NP-hard even for simple \mathcal{F}.

Solution to b): replace the indicator $I(y g(x)<0)$ with a convex upper bound $\phi(y g(x))$.

Solution to a)?

Gradient descent view of boosting

Let's search over the linear span of \mathcal{F} step-by-step. At each step t, we add a new function $f_{t} \in \mathcal{F}$ to the existing $g=\sum_{i=1}^{t-1} \alpha_{i} f_{i}$.

Let $C_{\phi}(g)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(y_{i} g\left(x_{i}\right)\right)$. We wish to find $f_{t} \in \mathcal{F}$ to add to g such that $C_{\phi}\left(g+\epsilon f_{t}\right)$ decreases. The desired direction is $-\nabla C_{\phi}(g)$. We choose the new function f_{t} such that it has the greatest inner product with $-\nabla C_{\phi}$, i.e. it maximizes

$$
-<\nabla C_{\phi}(g), f_{t}>
$$

Gradient descent view of boosting

One can verify that

$$
-<\nabla C_{\phi}(g), f_{t}>=-\frac{1}{n^{2}} \sum_{i=1}^{n} y_{i} f_{t}\left(x_{i}\right) \phi^{\prime}\left(y_{i} g\left(x_{i}\right)\right)
$$

Hence, finding f_{t} maximizing $-<\nabla C_{\phi}(g), f_{t}>$ is equivalent to minimizing the weighted error

$$
\sum_{i=1}^{n} w_{t}(i) I\left(f_{t}\left(x_{i}\right) \neq y_{i}\right)
$$

where

$$
w_{t}(i):=\frac{\phi^{\prime}\left(y_{i} g\left(x_{i}\right)\right)}{\sum_{j=1}^{n} \phi^{\prime}\left(y_{j} g\left(x_{j}\right)\right)}
$$

For $\phi(y g(x))=e^{-y g(x)}$ this becomes Adaboost.

