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Algorithms


We define an algorithm A to be a mapping from a training 

set S = {z1, . . . , zn} to a function fS. Here, zi ≡ (xi, yi). 

Throughout the next several lectures, we assume that A is 

deterministic, and that A does not depend on the ordering 

of the points in the training set. 

How can we measure quality of fS? 



� 

Risks


Recall that in Lecture 2 we’ve defined the true (expected) 
risk: 

I[fS] = IE(x,y) [V (fS(x), y)] = V (fS(x), y)dµ(x, y) 

and the empirical risk: 

1 n

IS[fS] = 
� 

V (fS(xi), yi). 
n i=1 

Note: the true and empirical risks are denoted in Bous-
ˆquet & Elisseeff as R(A, S) and R(A, S), respectively, to 

emphasize the algorithm that produced fS. 

Note: we will denote the loss function as V (f, z) or as 
V (f (x), y), where z = (x, y). 



Generalization Bounds


Our goal is to choose an algorithm A so that I[fS ] will be 

small. This is difficult because we can’t measure I[fS ]. 

We can, however, measure IS [fS]. A generalization bound 

is a (probabilistic) bound on how big the defect 

D[fS ] = I[fS ] − IS [fS ] 

can be. If we can bound the defect and we can observe 

that IS [fS ] is small, then I[fS ] must be small. 



Properties of Generalization Bounds, I


What will a generalization bound depend on? A gener

alization bound is a way of saying that the performance 

of a function on the training set has to be similar to its 

performance on future examples. For this reason, gener

alization bounds are always probabilistic: they hold with 

some (high) probability, to take into account the (low) 

chance that you’ll see a very unrepresentative training set. 



Properties of Generalization Bounds, II


Generalization bounds depend on some measure of the size 

of the hypothesis space we allow ourselves to choose from. 

As the hypothesis space gets smaller, the generalization 

bound will get tighter (but the empirical performance will 

often go down). As the hypothesis space gets bigger, the 

generalization bound will get looser. 

The bound will depend on the number of samples we have. 

In general, we would like the bounds to get tighter at least 

as fast as √1
n 
. 



Properties of Generalization Bounds, III


A good generalization bound will not depend on the prob

ability distribution P from which the examples are drawn. 

If it did, we couldn’t measure it, since P is unknown. 



� � 

Generalization Bounds By Bounding the

Hypothesis Space


In 9.520, we discuss two different ways to obtain general

ization bounds: 

One way is to explicitly bound the size of the hypothesis 
space H. For example, functions in an RKHS with ||f ||2 

K ≤
M form a bounded hypothesis space whose “size” can be 
measured and used to obtain generalization bounds (recall 
uGC classes of functions). 

IPS sup IS[f ] − I[f ] > � < δ |
f∈H

|

This approach will be discussed in future lectures.




Generalization Bounds By Stability


The other approach is to use stability of algorithms. Here, 
the basic idea is that we bound how much the function 
produced by an algorithm can change when we modify 
the training set slightly. In this class and the next class, 
we will explain and develop this approach to generalization 
bounds, and show that Tikhonov reguarization in an RKHS 
exhibits the necessary stability. 

Note that in this approach we are not concerned with 
“good performance” of all functions, but only the one 
produced by our algorithm: 

IPS ( IS[fS] − I[fS] > �) < δ | | 



Uniform Stability


Given a training set S, we define Si,z to be the new training 

set obtained when point i of S is replaced by the new point 

. Given this definition, we say that an algorithm A
z ∈ Z
has uniform stability β (is β-stable) if 

∀(S, z) ∈ Z n+1 , ∀i, sup V (fS, u) − V (fSi,z, u) ≤ β. 
u 
| |


An algorithm is β-stable if, for any possible training set, we 

can replace an arbitrary training point with any other pos

sible training point, and the loss at any point will change 

by no more than β. 



Uniform Stability Cont’d


Uniform stability is a strong requirement, because it ig

nores the fact that the points are drawn from a probability 

distribution. For uniform stability, the function still has 

to change very little even when a very unlikely (“bad”) 

training set is drawn. 

In general, the stability β is a function of n, and should 

perhaps be written βn. 



Stability and Concentration Inequalities


Question: Given that an algorithm A has stability β, how 

can we get bounds on its performance? 

Answer: Concentration Inequalities. In particular, we will 

use McDiarmid’s Inequality. 

Concentration Inequalities show how a variable is concen

trated around its mean. 

Michel Talagrand:


A random variable that depends (in a “smooth” way) on 

the influence of many independent variables (but not too 

much on any of them) is essentially constant. 



McDiarmid’s Inequality


nGiven random variables v1, . . . , vn, and a function F : v →
IR satisfying 

sup F (v1, . . . , vn) − F (v1, . . . , vi−1, vi
�, vi+1, . . . , vn) ≤ ci, 

v1,...,vn,v
| |

i
�

the following statement holds: 
� 

2�2 
� 

IP ( F (v1, . . . , vn) − IES(F (v1, . . . , vn)) > �) ≤ 2 exp 2 .| | −�
i
n 
=1 ci 

This is an example of the law of large numbers. 



�
 �


�
 � 

Example: Hoeffding’s Inequality


Suppose each vi ∈ [a, b], and we define F (v1, . . . , vn) = 
11 �

i
n 
=1 vi, the average of the vi. Then, ci = n(b − a).n 

Applying McDiarmid’s Inequality, we have that 

2�2

IP ( F (v) − IE(F (v)) > �) ≤ 2 exp 2| | −�n

i=1 c⎛
⎝


i 

2�2
⎞
⎠
= 2 exp


(b− a))2 

= 2 exp .−
(b− a)2 

We have easily recovered the famous “Hoeffding’s Inequal


ity”. (Of course, we did not prove McDiarmid’s Inequality.)


−�n
i=1(

1 
n

2n�2




Generalization Bounds via McDiarmid’s

Inequality


We will use β-stability to apply McDiarmid’s inequality to 

the defect D[fS ] = I[fS ] − IS [fS ]. To do this, we will need 

two things: 

1. the expectation of the defect (we can’t measure it, but 

we can bound its expectation) and 

2. a bound on how much the defect can change when we 

replace a point. 

In order to bound the deviation (the second quantity), we 

require that there exist an upper bound M on the loss. 



Bounding The Expectation of The Defect


IESD[fS ]
 IES [IS [fS ] − I[fS]] 

1
⎡
⎣ 

=
 ⎤
⎦ 

n�
IES,z V (fS (xi), yi) − V (fS (x), y)= 

n i=1 

IES,z 

⎡
⎣


⎤
⎦
1
 n�


n i=1 
V (fSi,z (x), y) − V (fS (x), y)
= 

≤ β


The second equality follows by exploiting the “symmetry” 

of expectation: The expected value of a training set on 

a training point doesn’t change when we “rename” the 

points. 



�

Bounding The Deviation of The Defect


D[fS ]− D[fSi,z ] = IS[fS ]− I[fS ]− ISi,z [fSi,z ] + I[fSi,z ]| | | | 
I[fS ]− I[fSi,z ] + IS [fS ]− ISi,z [fSi,z ]≤ |

1 
| | | 

β + V (fS (xi), yi)− V (fSi,z (x), y)≤ 
n
| | 

1

+	

� 
V (fS (xj ), yj )− V (fSi,z (xj ), yj )

n 
| |

j=i 

M ≤ β + + β

n 
M 

= 2β + 
n 



�
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� �


Applying McDiarmid’s Inequality


By McDiarmid’s Inequality, for any �,

⎛
⎝
 2�2


IP ( D[fS ] − IED[fS ] > �) ≤ 2 exp | | =−�
i
n 
=1(2(β + M ))2 

n 

= 2 exp 

⎛
⎝


⎞
⎠
 = 2 exp


�2 n�2 
− −

2(nβ + M )22n(β + M )2 
n 

Note that 

IP(D[fS ] > β + �) = 
≤ 

IP(D[fS ] − IED[fS ] > �) 
IP(|D[fS ] − IED[fS ]| > �) 

Hence, 

⎞
⎠ 

n�2

IP(IS [fS ] − I[fS ] > β + �) ≤ 2 exp −

2(nβ + M )2 



A Different Form Of The Bound


If we define 
� 

n�2 
� 

δ ≡ 2 exp .
−
2(nβ + M )2 

Solving for � in terms of δ, we find that 
�

2 ln(2/δ)
� = (nβ + M ) .


n 

By varying δ (and �), we can say that for any δ ∈ (0, 1), 

with probability 1 − δ, 
�

2 ln(2/δ)
I[fS ] ≤ IS [fS ] + β + (nβ + M ) . 

n 



Fast Convergence


Note that if β = k for some k, we can restate our bounds n 
as 

� 
k 

� � 
n�2 

� 

P I[fS ] − IS [fS ] + � ≤ 2 exp ,| | ≥ 
n 

−
2(k + M )2 

and with probability 1 − δ, 

k 
�

2 ln(2/δ)
I[fS] ≤ IS [fS ] + + (2k + M ) . 

n n 



Fast Convergence, Cont’d


kFor the uniform stability approach we’ve described, β = n 
(for some constant k) is “good enough”. Obviously, the 

best possible stability would be β = 0 — the function 

can’t change at all when you change the training set. An 

algorithm that always picks the same function, regardless 

of its training set, is maximally stable and has β = 0. Using 

β = 0 in the last bound, with probability 1 − δ, 
�

2 ln(2/δ)
I[fS ] ≤ IS [fS ] + M . 

n 

The convergence is still O 
� 
√1

n 

� 

. So once β = O(1), further n

increases in stability don’t change the rate of convergence.
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Other kinds of stabilities


Notation: ∀δ means “for all except a set of measure δ. 

An algorithm A : Zn → F is


uniformly β hypothesis stable: 

∀i, (S, u) ∈ Z n+1 , sup 
z∈Z

{|V (fS, z) − V (fSi,u, z)|} ≤ β. 

(β, δ) leave-one-out stable: 

≤ β.
δ V (fS, zi) − V (fSi, zi)S, ∀i,∀ 

(β, δ) error stable: 

δ(S, u), ∀i, I[fS] − I[fSi,u] ≤ β.∀ 

(β, δ) cross-validation stable: 

nδS ∈ Z , ∀i, u ∈ Z,∀
 V (fS, u) − V (fSi,u, u) ≤ β. 



Thoughts on stability and open questions


Stability is a new research area – still things to be done.


Good generalization bounds can be proved for specific al

gorithms if certain types of stabilities can be shown. 

There might be a way to apply other concentration in

equalities to get faster O 
�
1

� 
convergence.n 



Summary


We used McDiarmid’s inequality to prove a generalization 

bound for a uniformly β-stable algorithm. Note that this 

bound cannot tell us that the expected error will be low 

a priori, it can only tell us that with high probability, the 

expected error will be close to the empirical error. We have 

to actually observe a low empirical error to conclude that 

we have a low expected error. 

Uniform stability of O 
�
1

� 
seems to be a strong require-n 

ment. Next time, we will show that Tikhonov regulariza

tion possesses this property. 


