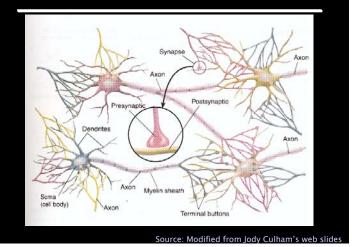
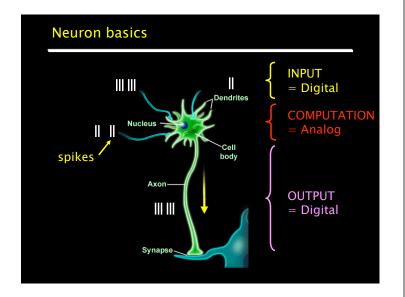
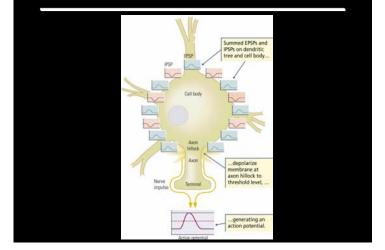


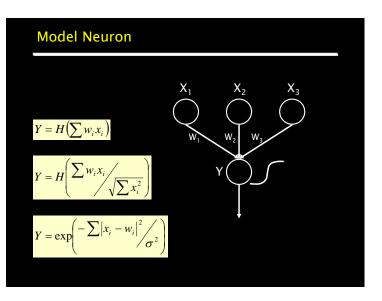
Neural Network

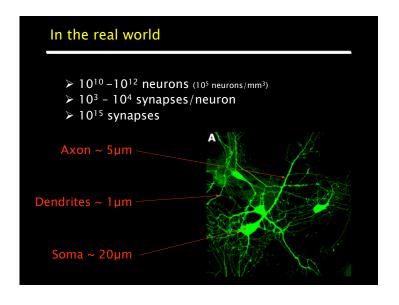


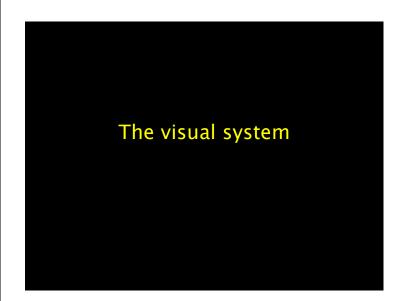


Computation at the SOMA

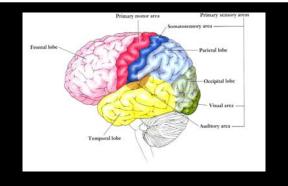




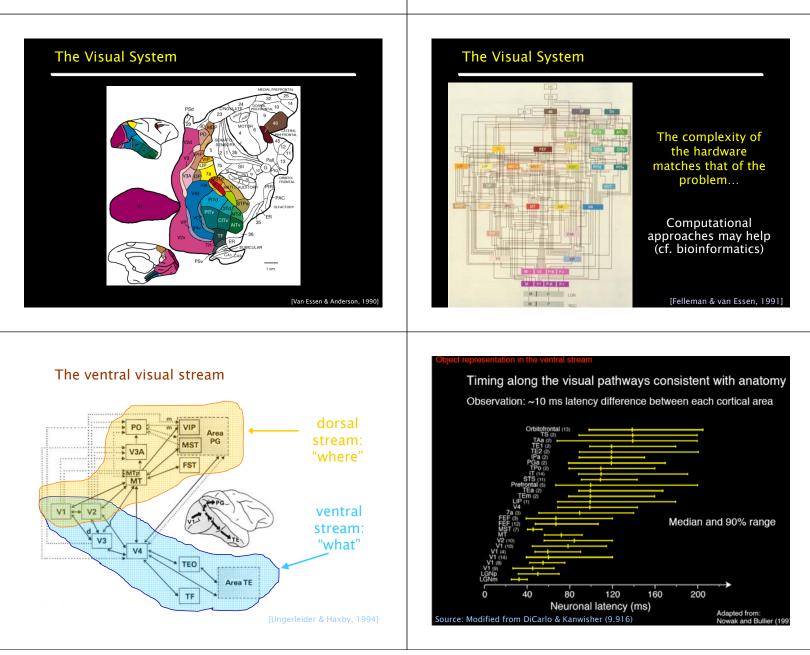


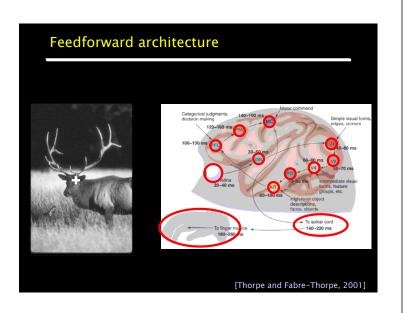


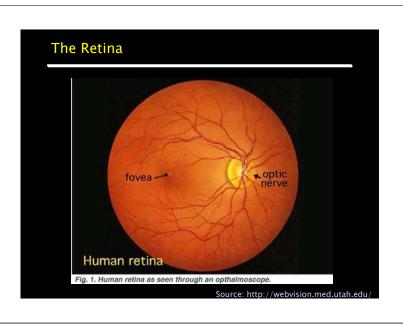
Gross Brain Anatomy



50-60% of the brain devoted to vision

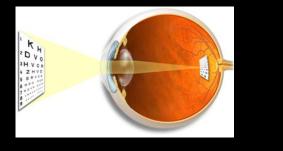




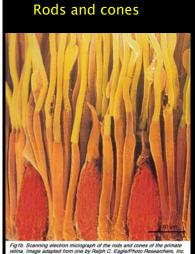


Photoreceptors

- ➤ Back of the eyes
- Behind blood vessels
- > 100 million+ photoreceptors



Source: http://webvision.med.utah.edu/

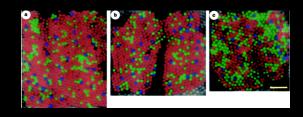


- Duplicity theory
- 2 classes of photoreceptors for 2 different luminance regimes:
 - Scotopic vision: Rods
 - Photopic vision: Cones

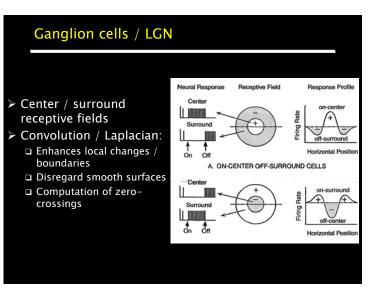
Source: http://webvision.med.utah.edu/

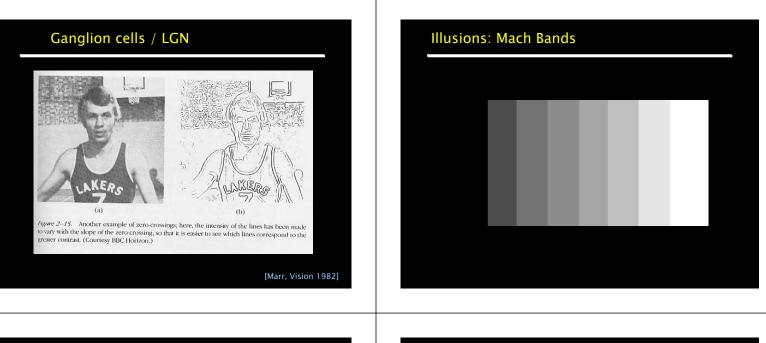
Cone type distrib. varies between ind.

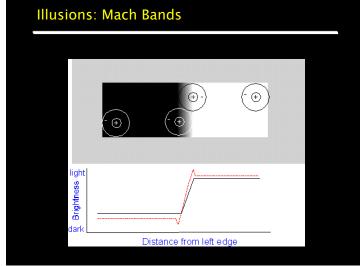
- > We don't all see the same thing!!
- > Human trichromatic cone mosaic

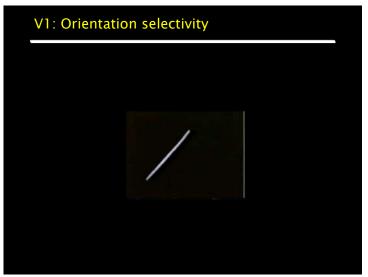


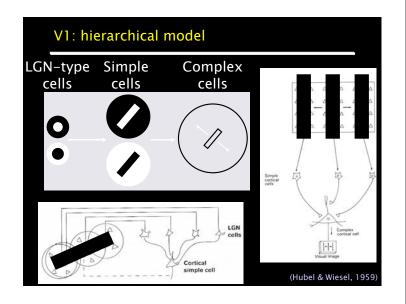
[Roorda & Williams, Nature 1999]



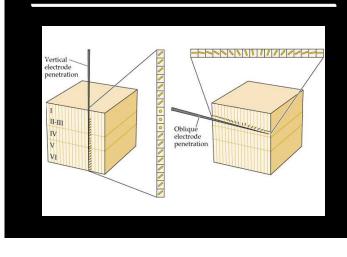


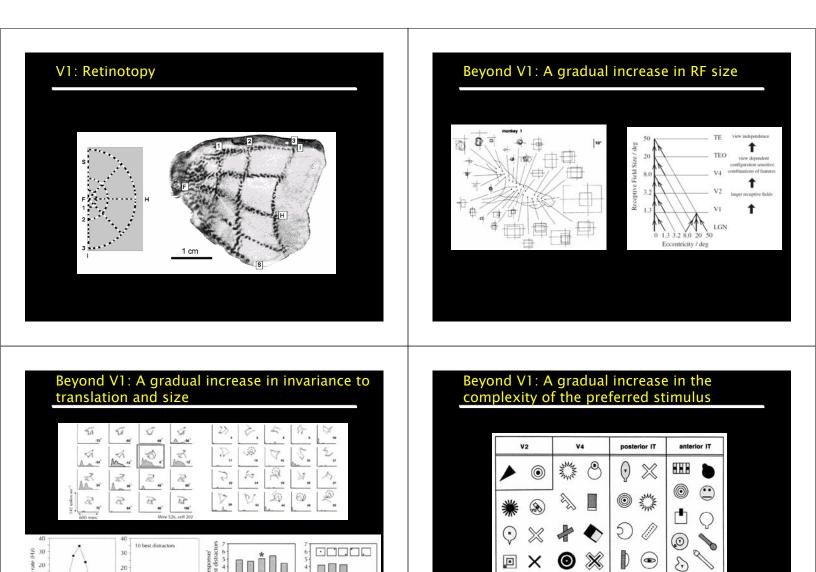






V1: Orientation columns





Anterior IT

84 108 132 156 180

Rotation around Y axis

10

0

Distractor identification

Degrees of visual angle

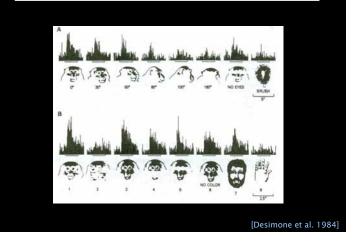
Azimuth and elevation $(x = 2.25^{\circ})$

379 20 5 24 3 2 1 0

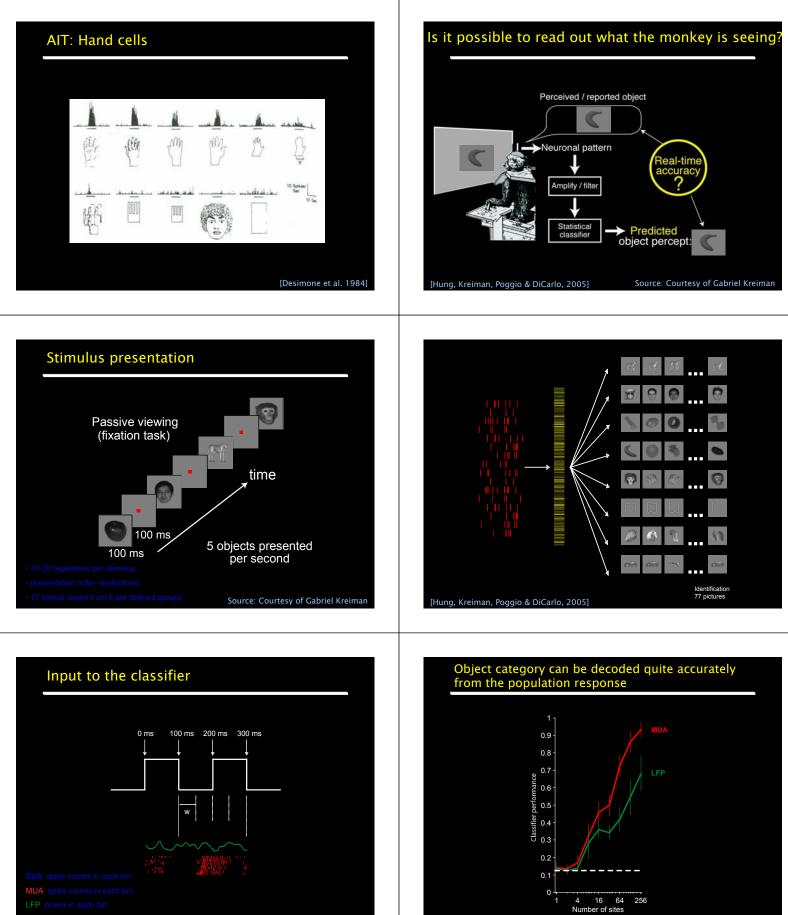
10

- > Very large receptive fields (several degrees)
- Invariance:
 - Position
 Scale
- > Hand, face, "toilet brush" cells, etc
- Broad cells tuning
 - □ Population coding
 □ ≠ "grand-mother" cells

AIT: Face cells



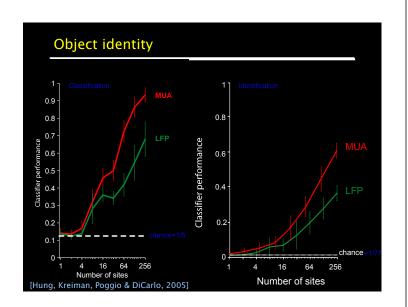
[Kobatake et al, 1994]

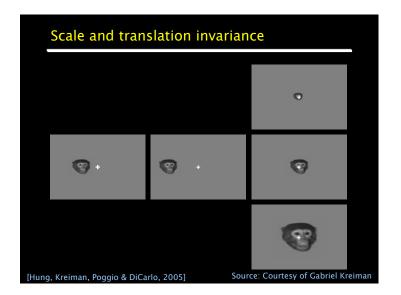


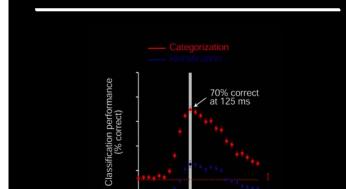
MUA+LFP: 0

Source: Courtesy of Gabriel Kreiman

[Hung, Kreiman, Poggio & DiCarlo, 2005]







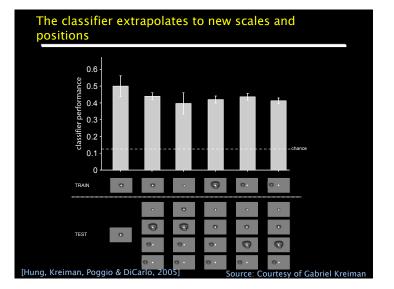
100

200

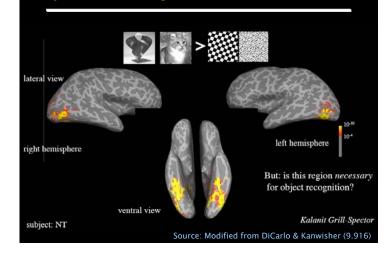
Time from stimulus onset (ms)

300

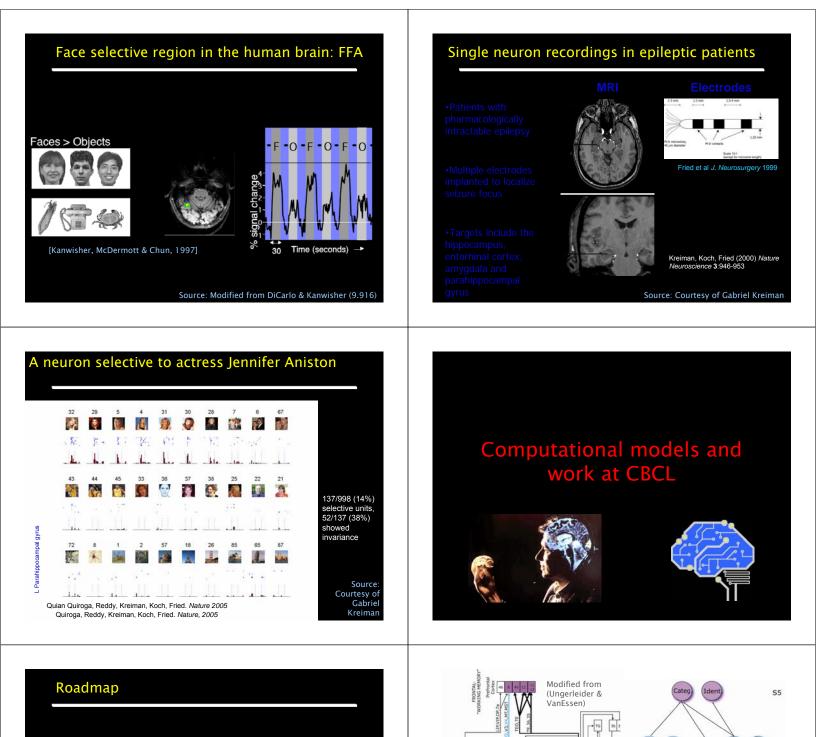
[Hung, Kreiman, Poggio & DiCarlo, 2005]



Object selective region in the human brain: LOC



12.5 ms are enough to decode well above chance



- ١.
- Ш. Comparison with other computer vision systems
- Comparison with human observers 111.

Main routes — TUNENG
 Dypass routes ···· MAX

ventral str 'what' pat

dorsal stream 'where' pathway

TE

C) Com

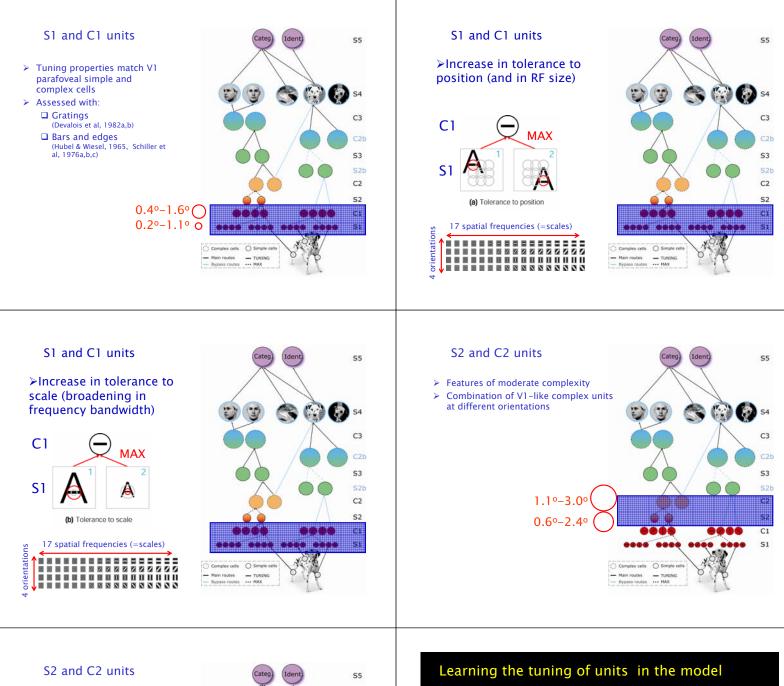
ex cells O Simp

S4

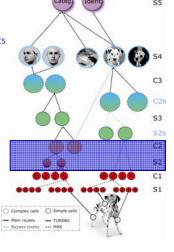
C3

\$3

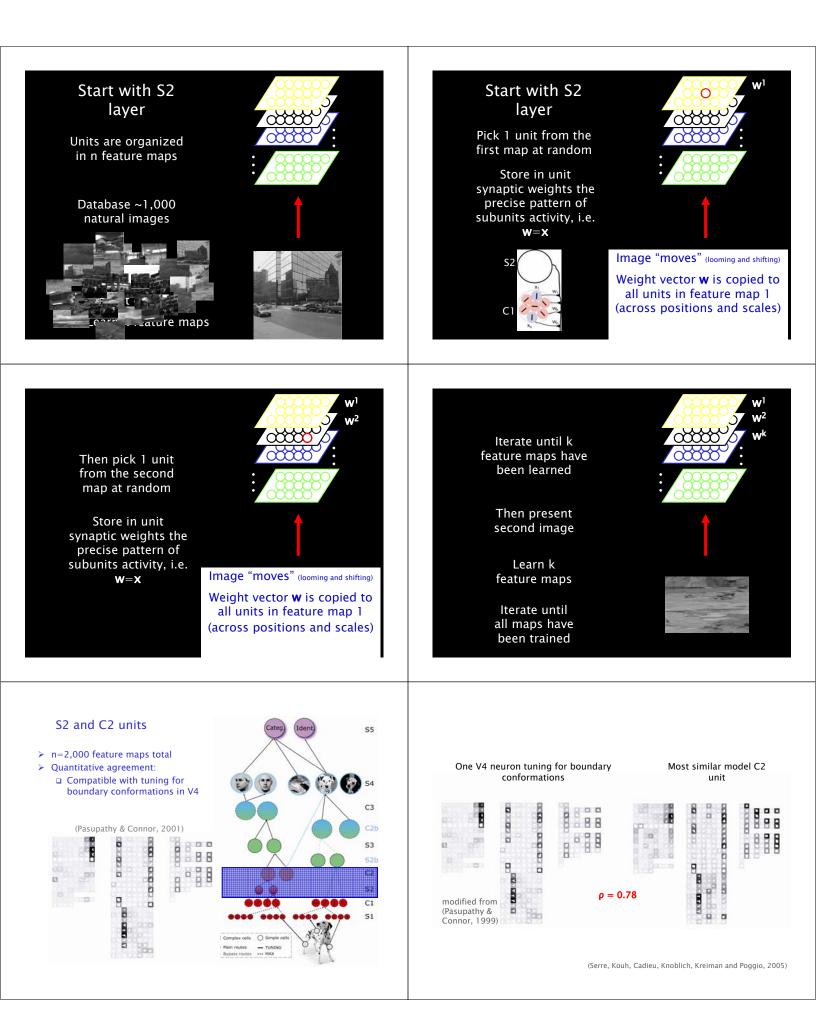
C2 S2 C1 **S**1

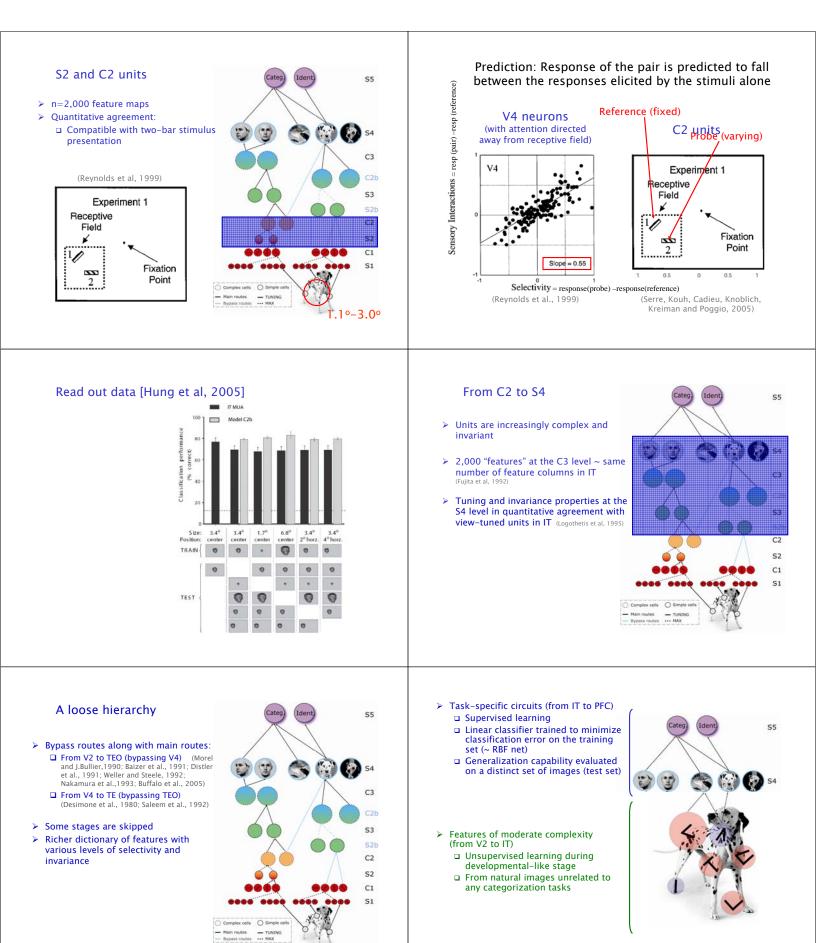


- Features of moderate complexity
- Combination of V1-like complex units at different orientations
 - □ 10 subunits
 - Synaptic weights w learned from natural images



- Learning is likely to play a key role in the recognition ability of primates
- From V2 to IT in the model, units are tuned to a large number of "patches" from natural images
- Details still open-ended (more than the rest of the model, i.e., RF sizes, tuning properties) for which we have quantitative data
- For clarity, I will describe the learning approach in a more "algorithmic" way (but see thesis for more biological implementation)





A neurobiological approach

- Biophysical implementations
 Based on simple properties of cortical circuits and synapses [Yu et al, 2002; Knoblich & Poggio, 2005]
- > Reflects organization of the ventral stream
- Predicts several properties of cortical neurons [Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio, 2005]

Successful model predictions

- MAX in V1 (Lampl et al, 2004) and V4 (Gawne et al, 2002)
- > Differential role of IT and PFC in categ. (Freedman et al, 2001,2002,2003)
- Face inversion effect (Riesenhuber et al, 2004)
- > IT read out data (Hung et al, 2005)
- Tuning and invariance properties Of VTUs in AIT (Logothetis et al, 1995)
- Average effect in IT (Zoccolan, Cox & DICarlo, 2005)
- Tow-spot reverse correlation in V1 (Livingstone and Conway, 2003; Serre et al, 2005)
- Tuning for boundary conformation (Pasupathy & Connor, 2001) in V4
- Tuning for Gratings in V4 (Gallant et al, 1996; Serre et al, 2005)
- Tuning for two-bar stimuli in V4 (Reynolds et al, 1999; Serre et al, 2005)
- > Tuning to Cartesian and non-Cartesian gratings in V4 (Serre et al, 2005)
- Two-spot interaction in V4 (Freiwald et al, 2005; Cadieu, 2005)

- How well does the model perform on different object categories?
- How does it compare to standard computer vision systems?

Roadmap

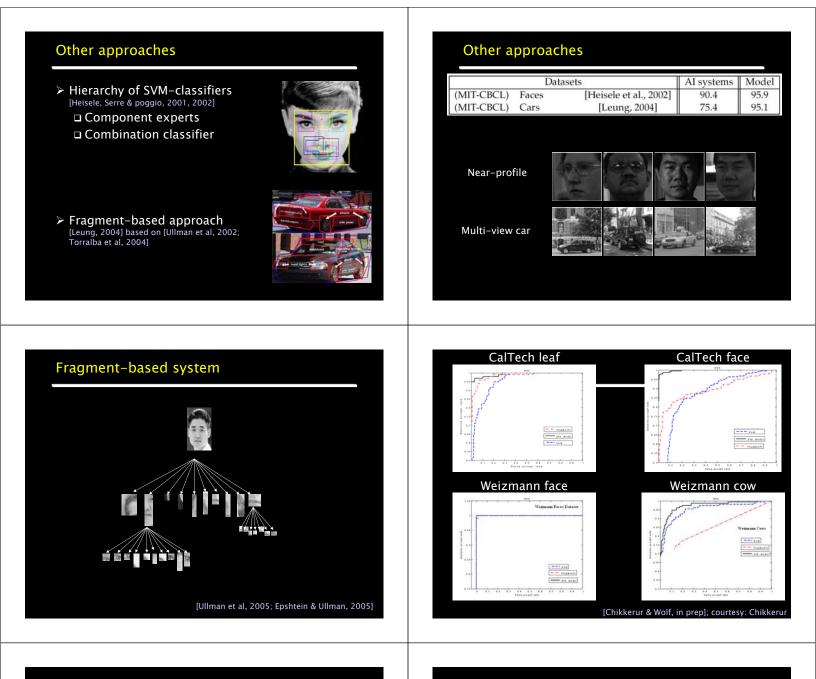
- I. The model
- II. Comparison with other computer vision systems
- III. Comparison with human observers

CalTech Vision Group

 Constellation models [Leung et al, 1995; Burl et al, 1998; Weber et al., 2000; Fergus et al, 2003; Fei-Fei et al, 2004]

CalTech Vision Group

Datasets			AI systems	Model
(CalTech)	Leaves	[Weber et al., 2000b]	84.0	97.0
(CalTech)	Cars	[Fergus et al., 2003]	84.8	99.7
(CalTech)	Faces	[Fergus et al., 2003]	96.4	98.2
(CalTech)	Airplanes	[Fergus et al., 2003]	94.0	96.7
(CalTech)	Motorcycles	[Fergus et al., 2003]	95.0	98.0

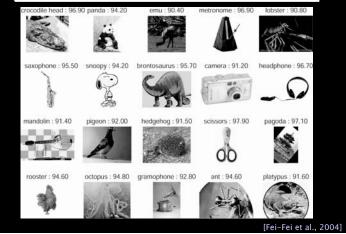


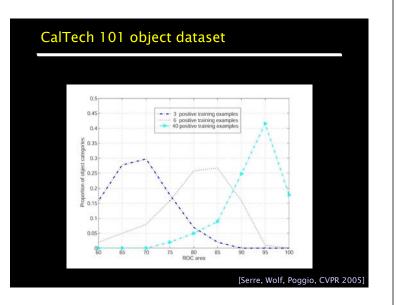
CalTech 101 object dataset

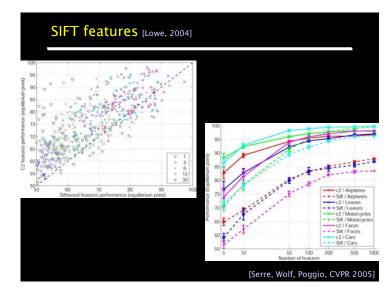
- > 40-800 images per categ. (mode ~ 50)
- > Large variations in shape, clutter, pose, illumination, size, etc.
- > Unsegmented (objects in clutter)
- Color information removed

[Fei-Fei et al., 2004]

CalTech 101 object dataset





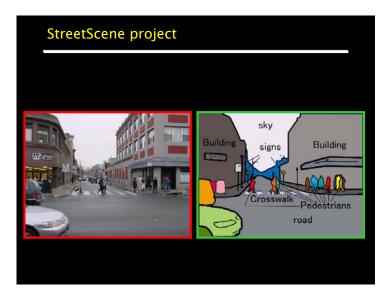


CalTech 101 object dataset

- Model re-implementation for multi-class
- \blacktriangleright chance < 1%
- > 15 training examples:
 - □ Serre, Wolf & Poggio (2004) ~ 44%
- □ Wolf & Bileschi (in sub) ~ 5
- Mutch & Lowe (in sub)

Others:

□ Holub, Welling & Perona (2005) ~ 44% □ Berg, Berg & Malik (2005) ~ 45%



Challenge

In-class variability:

>Vehicles of different types at many poses, illuminations.

Trees in both Summer and Winter

City and suburban scenes

Partial labeling:

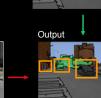
➢Rigid objects are only labeled if less than 15% occluded.

>Some objects are unlabeled.

Bounding boxes overlap and contain some background.

it Image _____ Segmented Image

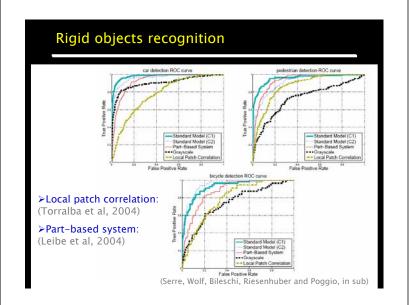
The system

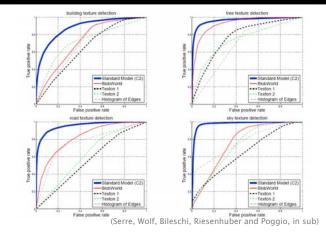


Standard Model

classification

Texture-based objects pathway (e.g., trees, road, sky, buildings)
 Rigid-objects pathway (e.g., pedestrians, cars)





- The model can handle the recognition of many different object categories in complex natural images
- The model performs surprisingly well at the level of some of the best computer vision systems
- > How does it compare to humans?

Roadmap

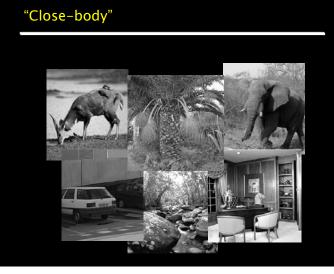
- I. The model
- II. Comparison with other computer vision systems
- III. Comparison with human observers

Animal vs. Non-animal categ.

- > Animals are rich class of stimuli
- > Variety of shapes, textures
- > Different depths of view, poses and sizes
- > Associated with context (natural landscape)

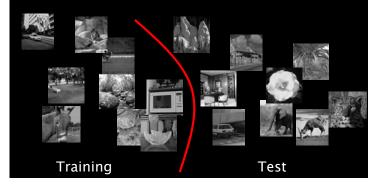
The Stimuli

- > 1,200 stimuli (from Corel database)
- > 600 animals in 4 categories:
 - Head
 - □ Close-body
 - □ Medium-body
- Far-body and groups
 600 matched distractors (½ art., ½ nat.) to prevent reliance on low-level cues

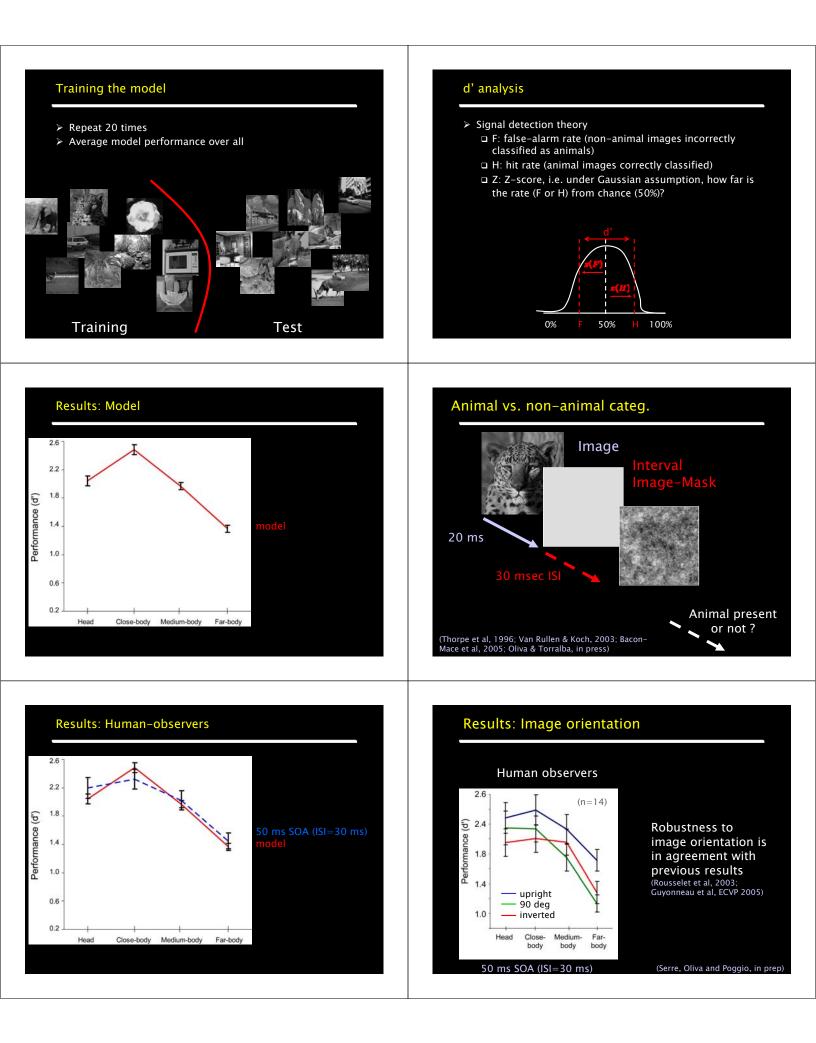


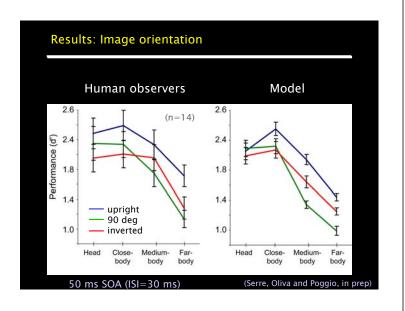
Training and testing the model

- > Random splits (good estimate of expected error)
- > Split 1,200 stimuli into two sets



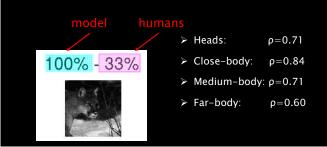
"Far-body"





Detailed comparison

- > For each individual image
- How many times image classified as animal:
 For humans: across subjects
 - □ For model: across 20 runs



	Contributors	
 The model predicts human performance extremely well when the delay between the stimulus and the mask is ~50 ms Under the assumption that the model correctly accounts for feedforward processing, the discrepancy for longer SOAs should be due to the cortical back- projections 	 Model: C. Cadieu U. Knoblich M. Kouh G. Kreiman T. Poggio M. Riesenhuber 	 Learning: M. Giese R. Liu C. Koch J. Louie T. Poggio M. Riesenhuber R. Sigala D. Walther
A very important question concerns the precise contribution of the feedback loops (Hochstein & Ahissar, 2002)	 Computer vision: S. Bileschi S. Chikkerur E. Meyers T. Poggio L. Wolf 	 Comparison with human- observers A. Oliva T. Poggio