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Object Recognition by Humans

Some numbers:
Basic-level categories*** ~ thousands
Subordinate-level:

Specific scenes** ~ thousands
Faces*                 > hundreds

*** Biederman (1974)
**  Standing (1973): good memory for 10,000 photos
*   Bahrick et al. (1975): 90% recognition of year-book photos of 

schoolmates, indep. of class size (90 to 900), and of time 
elapsed since graduation (3 mos. - 35 years).

Source: Modified from DiCarlo & Kanwisher (9.916)

M. Potter (1971)

Measured rate of scene/object recognition using 
RSVP
Subjects able to get the “gist” even at 7 images/s 
from an unpredictable random sequence of 
natural images

No time for eye movements
No top-down / expectations

Source: Modified from DiCarlo & Kanwisher (9.916)

Thorpe et al. (1996)

Rapid animal vs. non-animal categorization
Animal present vs. absent

How fast is object recognition?

ERP study: Recognition under 150 ms

[Thorpe et al, Nature 1996]

[Yip and Sinha, 2002]

Recognition performance:
7 x 10 pix: more than ½ set of familiar faces

19 x 27 pix: ceiling level 

Typical computer vision algorithms: 
60 x 60 pixels [Heisele et al., 2001, 2002, 2004]

Typical face db > 200 x 200 pix

Robustness to degradations



AI systems << primate visual system 
AI systems   ~  birds and insects

[Heisele, Serre & Poggio, 2001]

FAs by one computer vision system Pigeons can discriminate between:

Paintings 
Monet vs. Picasso
Van Gogh vs. Chagall

Animal vs. non-animal
Different kind of leaves
Letters of the alphabet
Human artifacts vs. natural 
objects

Source: Modified from Pawan Sinha (9.670)

Bees can discriminate between flower patterns

Training: One 
pattern reinforced 

with sugar

Test: New patterns

Source: Modified from Pawan Sinha (9.670)

Understanding how brains 
recognize objects may lead to 

better computer vision systems

Roadmap

1. Neuroscience 101:
Neuron basics
Primate visual cortex 

2. Computational model 
developed at CBCL

Neuron Basics



Different shapes and sizes but common structure

Source: http://webvision.med.utah.edu/

Neural Network

Source: Modified from Jody Culham’s web slides

Neuron basics

spikes

INPUT    
= Digital

COMPUTATION 
= Analog

OUTPUT 
= Digital

Computation at the SOMA
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In the real world

Dendrites ~ 1μm

Axon ~ 5μm

Soma ~ 20μm 

1010 -1012 neurons (105 neurons/mm3)
103 – 104 synapses/neuron
1015 synapses



The visual system

Gross Brain Anatomy

50-60% of the brain devoted to vision

The Visual System

[Van Essen & Anderson, 1990]

The complexity of 
the hardware 

matches that of the 
problem…

[Felleman & van Essen, 1991]

Computational 
approaches may help 
(cf. bioinformatics)

The Visual System

The ventral visual stream

[Ungerleider & Haxby, 1994]

dorsal 
stream:
“where”

ventral 
stream:
“what”

Source: Modified from DiCarlo & Kanwisher (9.916)



[Thorpe and Fabre-Thorpe, 2001]

Feedforward architecture The Retina

Source: http://webvision.med.utah.edu/

Back of the eyes
Behind blood vessels
100 million+ photoreceptors

Photoreceptors

Source: http://webvision.med.utah.edu/ Source: http://webvision.med.utah.edu/

Duplicity theory
2 classes of 
photoreceptors for 2 
different luminance 
regimes:

Scotopic vision: Rods
Photopic vision: Cones

Rods and cones

We don’t all see the same thing!!
Human trichromatic cone mosaic

Cone type distrib. varies between ind.

[Roorda & Williams, Nature 1999]

Ganglion cells / LGN

Center / surround 
receptive fields
Convolution / Laplacian:

Enhances local changes / 
boundaries
Disregard smooth surfaces
Computation of zero-
crossings



Ganglion cells / LGN

[Marr, Vision 1982]

Illusions: Mach Bands

Illusions: Mach Bands V1: Orientation selectivity

V1: hierarchical model

LGN-type 
cells

Simple 
cells

Complex 
cells

(Hubel & Wiesel, 1959)

V1: Orientation columns



V1: Retinotopy Beyond V1: A gradual increase in RF size

Reproduced from [Kobatake & Tanaka, 1994] Reproduced from [Rolls, 2004]

Beyond V1: A gradual increase in invariance to 
translation and size

See also [Perrett & Oram, 1993; Ito et al, 1995; Logothetis & Sheinberg, 1996; Tanaka 1996]

Reproduced from [Logothetis et al, 1995]

Reproduced from [Kobatake & Tanaka, 1994]

Beyond V1: A gradual increase in the 
complexity of the preferred stimulus

[Kobatake et al, 1994]

Very large receptive fields (several degrees)
Invariance:

Position
Scale

Hand, face, “toilet brush” cells, etc
Broad cells tuning

Population coding
=“grand-mother” cells

Anterior IT AIT: Face cells

[Desimone et al. 1984]



AIT: Hand cells

[Desimone et al. 1984]

Is it possible to read out what the monkey is seeing?

Source: Courtesy of Gabriel Kreiman[Hung, Kreiman, Poggio & DiCarlo, 2005]

100 ms
100 ms

time

Passive viewing
(fixation task)

5 objects presented
per second

• 10-20 repetitions per stimulus

• presentation order randomized

• 77 stimuli drawn from 8 pre-defined groups

Stimulus presentation

Source: Courtesy of Gabriel Kreiman
Classification
8 groups

Identification
77 pictures

[Hung, Kreiman, Poggio & DiCarlo, 2005]

100 ms0 ms 200 ms 300 ms

w

SUA: spike counts in each bin

MUA: spike counts in each bin

LFP: power in each bin

MUA+LFP: concatenation of MUA and LFP

Input to the classifier

Source: Courtesy of Gabriel Kreiman
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Object category can be decoded quite accurately 
from the population response

[Hung, Kreiman, Poggio & DiCarlo, 2005]
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Classification Identification

chance=1/8

=1/77

[Hung, Kreiman, Poggio & DiCarlo, 2005]

12.5 ms are enough to decode well above chance

[Hung, Kreiman, Poggio & DiCarlo, 2005]

Scale and translation invariance

+
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Source: Courtesy of Gabriel Kreiman[Hung, Kreiman, Poggio & DiCarlo, 2005]

The classifier extrapolates to new scales and 
positions
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TEST

Source: Courtesy of Gabriel Kreiman[Hung, Kreiman, Poggio & DiCarlo, 2005]

What about humans?

Object selective region in the human brain: LOC

Source: Modified from DiCarlo & Kanwisher (9.916)



Face selective region in the human brain: FFA

Source: Modified from DiCarlo & Kanwisher (9.916)

[Kanwisher, McDermott & Chun, 1997]

Single neuron recordings in epileptic patients

•Patients with 
pharmacologically 
intractable epilepsy

Kreiman, Koch, Fried (2000) Nature 
Neuroscience 3:946-953

ElectrodesMRI

•Multiple electrodes 
implanted to localize 
seizure focus

•Targets include the 
hippocampus, 
entorhinal cortex, 
amygdala and 
parahippocampal 
gyrus

Fried et al J. Neurosurgery 1999

Source: Courtesy of Gabriel Kreiman

A neuron selective to actress Jennifer Aniston

Quiroga, Reddy, Kreiman, Koch, Fried. Nature, 2005

L 
Pa

ra
hi

pp
oc

am
pa

l g
yr

us

ROC area=1

Quian Quiroga, Reddy, Kreiman, Koch, Fried. Nature 2005

137/998 (14%) 
selective units, 
52/137 (38%) 
showed 
invariance

Source: 
Courtesy of 

Gabriel 
Kreiman

Computational models and 
work at CBCL

Roadmap

I. The model

II. Comparison with other computer vision 
systems

III. Comparison with human observers

Modified from 
(Ungerleider & 
VanEssen)

[Riesenhuber & Poggio, 1999, 2000;                              
Serre, Kouh, Cadieu, Knoblich, Kreiman & Poggio, 2005]



Tuning properties match V1 
parafoveal simple and 
complex cells 
Assessed with:

Gratings                     
(Devalois et al, 1982a,b)
Bars and edges           
(Hubel & Wiesel, 1965,  Schiller et 
al, 1976a,b,c)

S1 and C1 units

0.2o-1.1o
0.4o-1.6o

4 
or

ie
nt

at
io

ns 17 spatial frequencies (=scales)

S1

C1

Increase in tolerance to 
position (and in RF size)

MAX

S1 and C1 units

4 
or

ie
nt

at
io

ns 17 spatial frequencies (=scales)

S1

C1
MAX

Increase in tolerance to 
scale (broadening in 
frequency bandwidth)

S1 and C1 units S2 and C2 units

Features of moderate complexity
Combination of V1-like complex units 
at different orientations

0.6o-2.4o

1.1o-3.0o

S2 and C2 units

Features of moderate complexity
Combination of V1-like complex units 
at different orientations

10 subunits
Synaptic weights w learned from 
natural images

S2 
unit

Learning the tuning of units  in the model

Learning is likely to play a key role in the 
recognition ability of primates

From V2 to IT in the model, units are tuned to a 
large number of “patches” from natural images

Details still open-ended (more than the rest of 
the model, i.e., RF sizes, tuning properties) for  
which we have quantitative data

For clarity, I will describe the learning approach 
in a more “algorithmic” way (but see thesis for 
more biological implementation)



Units are organized 
in n feature maps

Database ~1,000 
natural images

At each iteration:
Present one image 
Learn k feature maps 

Start with S2 
layer …

… Pick 1 unit from the 
first map at random

Start with S2 
layer …

…
Store in unit 

synaptic weights the 
precise pattern of 

subunits activity, i.e. 
w=x

w1

Image “moves” (looming and shifting)

Weight vector w is copied to  
all units in feature map 1 

(across positions and scales) C1

S2

Then pick 1 unit 
from the second 
map at random

…

…

w1

Image “moves” (looming and shifting)

Weight vector w is copied to  
all units in feature map 1 

(across positions and scales)

w2

Store in unit 
synaptic weights the 

precise pattern of 
subunits activity, i.e. 

w=x

Iterate until k 
feature maps have 

been learned

…

…

w1

w2

wk

Then present 
second image

Learn k 
feature maps

Iterate until 
all maps have 
been trained

S2 and C2 units

(Pasupathy & Connor, 2001)

n=2,000 feature maps total
Quantitative agreement:

Compatible with tuning for 
boundary conformations in V4

One V4 neuron tuning for boundary 
conformations

ρ = 0.78

Most similar model C2 
unit

modified from 
(Pasupathy & 
Connor, 1999)

(Serre, Kouh, Cadieu, Knoblich, Kreiman and Poggio, 2005)



S2 and C2 units

1.1o-3.0o

n=2,000 feature maps
Quantitative agreement:

Compatible with two-bar stimulus 
presentation

(Reynolds et al, 1999)

V4 neurons         
(with attention directed 

away from receptive field)

(Reynolds et al., 1999) (Serre, Kouh, Cadieu, Knoblich, 
Kreiman and Poggio, 2005)

C2 units
Reference (fixed)

Probe (varying)

= response(probe) –response(reference)
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Prediction: Response of the pair is predicted to fall 
between the responses elicited by the stimuli alone

Read out data [Hung et al, 2005] From C2 to S4

Units are increasingly complex and 
invariant

2,000 “features” at the C3 level ~ same 
number of feature columns in IT         
(Fujita et al, 1992)

Tuning and invariance properties at the 
S4 level in quantitative agreement with 
view-tuned units in IT (Logothetis et al, 1995)

Bypass routes along with main routes: 
From V2 to TEO (bypassing V4)    (Morel 
and J.Bullier,1990; Baizer et al., 1991; Distler
et al., 1991; Weller and Steele, 1992; 
Nakamura et al.,1993; Buffalo et al., 2005)
From V4 to TE (bypassing TEO)
(Desimone et al., 1980; Saleem et al., 1992)

Some stages are skipped
Richer dictionary of features with 
various levels of selectivity and 
invariance

A loose hierarchy

Features of moderate complexity 
(from V2 to IT) 

Unsupervised learning during 
developmental-like stage
From natural images unrelated to 
any categorization tasks

Task-specific circuits (from IT to PFC)
Supervised learning
Linear classifier trained to minimize 
classification error on the training 
set (~ RBF net)
Generalization capability evaluated 
on a distinct set of images (test set)



Biophysical implementations
Based on simple properties of cortical circuits 
and synapses [Yu et al, 2002; Knoblich & Poggio, 2005]

Reflects organization of the ventral stream

Predicts several properties of cortical neurons   
[Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio, 2005]

A neurobiological approach Successful model predictions

MAX in V1 (Lampl et al, 2004) and V4 (Gawne et al, 2002)
Differential role of IT and PFC in categ. (Freedman et al, 2001,2002,2003)
Face inversion effect (Riesenhuber et al, 2004)
IT read out data (Hung et al, 2005)
Tuning and invariance properties Of VTUs in AIT (Logothetis et al, 1995)
Average effect in IT (Zoccolan, Cox & DICarlo, 2005)
Tow-spot reverse correlation in V1 (Livingstone and Conway, 2003; Serre et al, 
2005)
Tuning for boundary conformation (Pasupathy & Connor, 2001) in V4
Tuning for Gratings in V4 (Gallant et al, 1996; Serre et al, 2005)
Tuning for two-bar stimuli in V4 (Reynolds et al, 1999; Serre et al, 2005)
Tuning to Cartesian and non-Cartesian gratings in V4 (Serre et al, 2005)
Two-spot interaction in V4  (Freiwald et al, 2005; Cadieu, 2005)

How well does the model perform on different 
object categories?
How does it compare to standard computer 
vision systems?

Roadmap

I. The model

II. Comparison with other computer vision 
systems

III. Comparison with human observers

CalTech Vision Group

Constellation models      [Leung et al, 1995; Burl et al, 1998; 
Weber et al., 2000; Fergus et al, 2003; Fei-Fei et al, 2004]

rear-car airplane frontal face motorbike leaf

CalTech Vision Group



Other approaches

Hierarchy of SVM-classifiers                
[Heisele, Serre & poggio, 2001, 2002]

Component experts
Combination classifier

Fragment-based approach    
[Leung, 2004] based on [Ullman et al, 2002; 
Torralba et al, 2004]

Near-profile

Multi-view car

Other approaches

[Ullman et al, 2005; Epshtein & Ullman, 2005]

Fragment-based system CalTech leaf CalTech face

Weizmann cowWeizmann face

[Chikkerur & Wolf, in prep]; courtesy: Chikkerur

CalTech 101 object dataset

[Fei-Fei et al., 2004]

40−800 images per categ. (mode ~  50)
Large variations in shape, clutter, pose, illumination, size, etc.
Unsegmented (objects in clutter)
Color information removed

CalTech 101 object dataset

[Fei-Fei et al., 2004]



CalTech 101 object dataset

[Serre, Wolf, Poggio, CVPR 2005]

SIFT features [Lowe, 2004]

[Serre, Wolf, Poggio, CVPR 2005]

CalTech 101 object dataset

Model re-implementation for multi-class
chance < 1%
15 training examples:

Serre, Wolf & Poggio (2004)      ~ 44%
Wolf & Bileschi (in sub)             ~ 56%
Mutch & Lowe (in sub)              ~ 56%

Others:
Holub, Welling & Perona (2005) ~ 44%
Berg, Berg & Malik (2005)          ~ 45%

StreetScene project

In-class variability:

Partial labeling:

Vehicles of different types at 
many poses, illuminations.

Trees in both Summer and 
Winter

City and suburban scenes

Rigid objects are only labeled 
if less than 15% occluded.

Some objects are unlabeled.

Bounding boxes overlap and 
contain some background.

Challenge

Input Image Segmented Image
Standard Model
classification

Windowing
Standard Model
classification Output

Texture-based objects pathway (e.g., trees, road, sky, buildings)

Rigid-objects pathway (e.g., pedestrians, cars)

carcarped

The system



(Serre, Wolf, Bileschi, Riesenhuber and Poggio, in sub)

Local patch correlation:     
(Torralba et al, 2004) 

Part-based system: 
(Leibe et al, 2004)

Rigid objects recognition Textured-object recognition

(Serre, Wolf, Bileschi, Riesenhuber and Poggio, in sub)

Examples

The model can handle the recognition of many 
different object categories in complex natural 
images
The model performs surprisingly well at the 
level of some of the best computer vision 
systems
How does it compare to humans?

Roadmap

I. The model

II. Comparison with other computer vision 
systems

III. Comparison with human observers

Animal vs. Non-animal categ.

Animals are rich class of stimuli
Variety of shapes, textures
Different depths of view, poses and sizes
Associated with context (natural landscape)



The Stimuli

1,200 stimuli (from Corel database)
600 animals in 4 categories: 

Head
Close-body
Medium-body
Far-body and groups

600 matched distractors (½ art., ½ nat.) to prevent 
reliance on low-level cues

“Head”

“Close-body” “Medium-body”

“Far-body” Training and testing the model

Random splits (good estimate of expected error)
Split 1,200 stimuli into two sets

Training Test 



Training the model

Repeat 20 times
Average model performance over all

Training Test 

d’ analysis

Signal detection theory
F: false-alarm rate (non-animal images incorrectly 
classified as animals)
H: hit rate (animal images correctly classified)
Z: Z-score, i.e. under Gaussian assumption, how far is 
the rate (F or H) from chance (50%)?

0% 50% 100%HF

d’

Results: Model

model

Animal vs. non-animal categ.

Animal present
or not ?

30 msec ISI

20 ms

Image
Interval 
Image-Mask

Mask
1/f noise

80 ms

(Thorpe et al, 1996; Van Rullen & Koch, 2003; Bacon-
Mace et al, 2005; Oliva & Torralba, in press)

Results: Human-observers

model
50 ms SOA (ISI=30 ms)

90 deg
inverted

upright

(Serre, Oliva and Poggio, in prep)

(n=14)

Human observers

Robustness to 
image orientation is 
in agreement with 
previous results 
(Rousselet et al, 2003; 
Guyonneau et al, ECVP 2005)

Results: Image orientation

50 ms SOA (ISI=30 ms)



Results: Image orientation

90 deg
inverted

upright

(n=14)

Human observers Model

(Serre, Oliva and Poggio, in prep)50 ms SOA (ISI=30 ms)

Detailed comparison 

For each individual image
How many times image classified as animal:

For humans: across subjects
For model: across 20 runs

model humans
Heads:             ρ=0.71 

Close-body:     ρ=0.84 

Medium-body: ρ=0.71

Far-body:         ρ=0.60

The model predicts human performance extremely 
well when the delay between the stimulus and the 
mask is ~50 ms
Under the assumption that the model correctly 
accounts for feedforward processing, the discrepancy 
for longer SOAs should be due to the cortical back-
projections
A very important question concerns the precise 
contribution of the feedback loops (Hochstein & Ahissar, 2002)
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Computer vision:
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