## Math Camp 2: Probability Theory <br> Sasha Rakhlin

## $\sigma$-algebra

A $\sigma$-algebra $\Sigma$ over a set $\Omega$ is a collection of subsets of $\Omega$ that is closed under countable set operations:

1. $\emptyset \in \Sigma$.
2. $E \in \Sigma$ then so is the complement of $E$.
3. If $F$ is any countable collection of sets in $\Sigma$, then the union of all the sets $E$ in $F$ is also in $\Sigma$.

## Measure

A measure $\mu$ is a function defined on a $\sigma$-algebra $\Sigma$ over a set $\Omega$ with values in $[0, \infty]$ such that

1. The empty set has measure zero: $\mu(\emptyset)=0$
2. Countable additivity: if $E_{1}, E_{2}, E_{3}, \ldots$ is a countable sequence of pairwise disjoint sets in $\Sigma$,

$$
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

The triple $(\Omega, \Sigma, \mu)$ is called a measure space.

## Lebesgue measure

The Lebesgue measure $\lambda$ is the unique complete translationinvariant measure on a $\sigma$-algebra containing the intervals in $\mathbb{R}$ such that $\lambda([0,1])=1$.

## Probability measure

Probability measure is a positive measure $\mu$ on the measurable space $(\Omega, \Sigma)$ such that $\mu(\Omega)=1$.
$(\Omega, \Sigma, \mu)$ is called a probability space.

A random variable is a measurable function $X: \Omega \mapsto \mathbb{R}$.

We can now define probability of an event

$$
P(\text { event } \mathrm{A})=\mu\left(\left\{x: I_{A(x)}=1\right\}\right) .
$$

## Expectation and variance

Given a random variable $X \sim \mu$ the expectation is

$$
\mathbb{E} X \equiv \int X d \mu
$$

Similarly the variance of the random variable $\sigma^{2}(X)$ is

$$
\operatorname{var}(X) \equiv \mathbb{E}(X-\mathbb{E} X)^{2}
$$

## Convergence

Recall that a sequence $x_{n}$ converges to the limit $x$

$$
x_{n} \rightarrow x
$$

if for any $\epsilon>0$ there exists an $N$ such that $\left|x_{n}-x\right|<\epsilon$ for $n>N$.

We say that the sequence of random variables $X_{n}$ converges to $X$ in probability

$$
X_{n} \xrightarrow{P} X
$$

if

$$
P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \rightarrow 0
$$

for every $\epsilon>0$.

## Convergence in probability and almost surely

Any event with probability 1 is said to happen almost surely. A sequence of real random variables $X_{n}$ converges almost surely to a random variable $X$ iff

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

Convergence almost surely implies convergence in probability.

## Law of Large Numbers. Central Limit Theorem

Weak LLN: if $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of i.i.d. random variables with finite variance $\sigma^{2}$, then

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n} \xrightarrow{P} \mathbb{E} X_{1}
$$

In other words, for any positive number $\epsilon$, we have

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|\bar{X}_{n}-\mathbb{E} X_{1}\right| \geq \varepsilon\right)=0
$$

CLT:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\Phi(z)
$$

where $\Phi$ is the cdf of $N(0,1)$.

## Useful Probability Inequalities

Jensen's inequality: if $\phi$ is a convex function, then

$$
\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))
$$

For $X \geq 0$,

$$
\mathbb{E}(X)=\int_{0}^{\infty} \operatorname{Pr}(X \geq t) d t
$$

Markov's inequality: if $X \geq 0$, then

$$
\operatorname{Pr}(X \geq t) \leq \frac{\mathbb{E}(X)}{t}
$$

where $t \geq 0$.

## Useful Probability Inequalities

Chebyshev's inequality (second moment): if $X$ is arbitrary random variable and $t>0$,

$$
\operatorname{Pr}(|X-\mathbb{E}(X)| \geq t) \leq \frac{\operatorname{var}(X)}{t^{2}}
$$

Cauchy-Schwarz inequality: if $\mathbb{E}\left(X^{2}\right)$ and $\mathbb{E}\left(Y^{2}\right)$ are finite, then

$$
|\mathbb{E}(X Y)| \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

## Useful Probability Inequalities

If $X$ is a sum of independent variables, then $X$ is better approximated by $\mathbb{E}(X)$ than predicted by Chebyshev's inequality. In fact, it's exponentially close!

Hoeffding's inequality:

Let $X_{1}, \ldots, X_{n}$ be independent bounded random variables, $a_{i} \leq X_{i} \leq b_{i}$ for any $i \in 1 \ldots n$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$, then for any $t>0$,

$$
\operatorname{Pr}\left(\left|S_{n}-\mathbb{E}\left(S_{n}\right)\right| \geq t\right) \leq 2 \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

## Remark about sup

Note that the statement

$$
\text { with prob. at least } 1-\delta, \forall f \in \mathcal{F},\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)\right| \leq \epsilon
$$

is different from the statement

$$
\forall f \in \mathcal{F}, \text { with prob. at least } 1-\delta,\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i}\right)\right| \leq \epsilon
$$

The second statement is an instance of CLT, while the first statement is more complicated to prove and only holds for some certain function classes.

## Playing with Expectations

Fix a function $f$, loss $V$, and dataset $S=\left\{z_{1}, \ldots, z_{n}\right\}$. The empirical loss of $f$ on this data is $I_{S}[f]=\frac{1}{n} \sum_{i=1}^{n} V\left(f, z_{i}\right)$. The expected error of $f$ is $I[f]=\mathbb{E}_{z} V(f, z)$. What is the expected empirical error with respect to a draw of a set $S$ of size $n$ ?

$$
\mathbb{E}_{S} I_{S}[f]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{S} V\left(f, z_{i}\right)=\mathbb{E}_{S} V\left(f, z_{1}\right)
$$

