Math Camp 2: Probability Theory

Sasha Rakhlin

σ -algebra

A σ -algebra Σ over a set Ω is a collection of subsets of Ω that is closed under countable set operations:

- 1. $\emptyset \in \Sigma$.
- 2. $E \in \Sigma$ then so is the complement of E.
- 3. If F is any countable collection of sets in Σ , then the union of all the sets E in F is also in Σ .

Measure

A measure μ is a function defined on a σ -algebra Σ over a set Ω with values in $[0,\infty]$ such that

- 1. The empty set has measure zero: $\mu(\emptyset) = 0$
- 2. Countable additivity: if E_1 , E_2 , E_3 , ... is a countable sequence of pairwise disjoint sets in Σ ,

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$$

The triple (Ω, Σ, μ) is called a *measure space*.

Lebesgue measure

The Lebesgue measure λ is the unique complete translation-invariant measure on a σ -algebra containing the intervals in \mathbb{R} such that $\lambda([0,1])=1$.

Probability measure

Probability measure is a positive measure μ on the measurable space (Ω, Σ) such that $\mu(\Omega) = 1$.

 (Ω, Σ, μ) is called a *probability space*.

A random variable is a measurable function $X: \Omega \mapsto \mathbb{R}$.

We can now define probability of an event

$$P(\text{event A}) = \mu \left(\{x : I_{A(x)} = 1\} \right).$$

Expectation and variance

Given a random variable $X \sim \mu$ the expectation is

$$\mathbf{E}X \equiv \int X d\mu.$$

Similarly the variance of the random variable $\sigma^2(X)$ is

$$\operatorname{var}(X) \equiv \mathbb{E}(X - \mathbb{E}X)^2$$
.

Convergence

Recall that a sequence x_n converges to the limit x

$$x_n \to x$$

if for any $\epsilon > 0$ there exists an N such that $|x_n - x| < \epsilon$ for n > N.

We say that the sequence of random variables X_n converges to X in probability

$$X_n \xrightarrow{P} X$$

if

$$P(|X_n - X| \ge \varepsilon) \to 0$$

for every $\epsilon > 0$.

Convergence in probability and almost surely

Any event with probability 1 is said to happen **almost** surely. A sequence of real random variables X_n converges almost surely to a random variable X iff

$$P\left(\lim_{n\to\infty}X_n=X\right)=1.$$

Convergence almost surely implies convergence in probability.

Law of Large Numbers. Central Limit Theorem

Weak LLN: if $X_1, X_2, X_3, ...$ is an infinite sequence of i.i.d. random variables with finite variance σ^2 , then

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n} \xrightarrow{P} \mathbb{E} X_1$$

In other words, for any positive number ϵ , we have

$$\lim_{n\to\infty} P\left(\left|\overline{X}_n - \mathbb{E}X_1\right| \ge \varepsilon\right) = 0.$$

CLT:

$$\lim_{n\to\infty} \Pr\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right) = \Phi(z)$$

where Φ is the cdf of N(0,1).

Useful Probability Inequalities

Jensen's inequality: if ϕ is a convex function, then

$$\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X)).$$

For $X \geq 0$,

$$\mathbb{E}(X) = \int_0^\infty \Pr(X \ge t) dt.$$

Markov's inequality: if $X \geq 0$, then

$$\Pr(X \ge t) \le \frac{\mathbb{E}(X)}{t},$$

where $t \geq 0$.

Useful Probability Inequalities

Chebyshev's inequality (second moment): if X is arbitrary random variable and t > 0,

$$\Pr(|X - \mathbb{E}(X)| \ge t) \le \frac{var(X)}{t^2}.$$

Cauchy-Schwarz inequality: if $\mathbb{E}(X^2)$ and $\mathbb{E}(Y^2)$ are finite, then

$$|\mathbb{E}(XY)| \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}.$$

Useful Probability Inequalities

If X is a sum of independent variables, then X is better approximated by $\mathbb{E}(X)$ than predicted by Chebyshev's inequality. In fact, it's exponentially close!

Hoeffding's inequality:

Let $X_1,...,X_n$ be independent bounded random variables, $a_i \leq X_i \leq b_i$ for any $i \in 1...n$. Let $S_n = \sum_{i=1}^n X_i$, then for any t > 0,

$$\Pr(|S_n - \mathbb{E}(S_n)| \ge t) \le 2exp\left(\frac{-2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Remark about sup

Note that the statement

with prob. at least
$$1-\delta$$
 , $\forall f \in \mathcal{F}, \ |\mathbf{E} f - \frac{1}{n} \sum_{i=1}^n f(z_i)| \leq \epsilon$

is different from the statement

$$\forall f \in \mathcal{F}$$
, with prob. at least $1 - \delta$, $|\mathbf{E}f - \frac{1}{n}\sum_{i=1}^n f(z_i)| \le \epsilon$.

The second statement is an instance of CLT, while the first statement is more complicated to prove and only holds for some certain function classes.

Playing with Expectations

Fix a function f, loss V, and dataset $S = \{z_1, ..., z_n\}$. The empirical loss of f on this data is $I_S[f] = \frac{1}{n} \sum_{i=1}^n V(f, z_i)$. The expected error of f is $I[f] = \mathbb{E}_z V(f, z)$. What is the expected empirical error with respect to a draw of a set S of size n?

$$\mathbb{E}_S I_S[f] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_S V(f, z_i) = \mathbb{E}_S V(f, z_1)$$