Knowledge Representation: Spaces, Trees, Features

Announcements

- Optional section 1: Introduction to Matlab
 - Tonight, 8:00 pm
- Problem Set 1 is available

The best statistical graphic ever?

Image removed due to copyright considerations. Please see: Tufte, Edward. *The Visual Display of Quantitative Information.* Cheshire CT: Graphics Press, 2001. ISBN: 0961392142.

The worst statistical graphic ever?

Image removed due to copyright considerations. Please see: Tufte, Edward. *The Visual Display of Quantitative Information.* Cheshire CT: Graphics Press, 2001. ISBN: 0961392142.

Knowledge Representation

- A good representation should:
 - be parsimonious
 - pick out important features
 - make common operations easy
 - make less common operations possible

Mental Representations

- Pick a domain: say animals
- Consider everything you know about that domain.
- How is all of that knowledge organized?
 - a list of facts?
 - a collection of facts and rules?
 - a database of statements in first-order logic?

Two Questions

- 1. How can a scientist figure out the structure of people's mental representations?
- 2. How do people acquire their representations?

Q: How can a scientist figure out the structure of people's mental representations?

A: Ask them for similarity ratings

- Q: How do people acquire their mental representations?
- A: They build them from raw features features that come for free

Outline

- Spatial Representations
 - Multidimensional scaling
 - Principal component analysis
- Tree representations
 - Additive trees
 - Hierarchical agglomerative clustering
- Feature representations
 - Additive clustering

Multidimensional scaling (MDS)

Marr's three levels

- Level 1: Computational theory
 - What is the goal of the computation, and what is the logic by which it is carried out?
- Level 2: Representation and algorithm
 - How is information represented and processed to achieve the computational goal?
- Level 3: Hardware implementation
 - How is the computation realized in physical or biological hardware?

MDS: Computational Theory

- d_{ij} : distance in a low-dimensional space
- δ_{ij} : human dissimilarity ratings
- Classical MDS: $d_{ij} \approx \delta_{ij}$
- Metric MDS: $d_{ij} \approx f(\delta_{ij})$
- Non-metric MDS: rank order of the d_{ij} should match rank order of the δ_{ij}

MDS: Computational Theory

• Cost function

- Classical MDS: cost =
$$\sum_{i,j} (d_{ij} - \delta_{ij})^2$$

MDS: Algorithm

• Minimize the cost function using standard methods (solve an eigenproblem if possible: if not use gradient-based methods)

Choosing the dimensionality

• Elbow method

Colours

Phonemes

What MDS achieves

- Sometimes discovers meaningful dimensions
- Are the dimensions qualitatively new ? Does MDS solve Fodor's problem?

What MDS doesn't achieve

- Solution (usually) invariant under rotation of the axes
- The algorithm doesn't know what the axes mean. We look at the low-dimensional plots and find meaning in them.

ideonomy.mit.edu

Image removed due to copyright considerations. Please See: <u>http://ideonomy.mit.edu/slides/16things.html</u>

> Patrick Gunkel

Two Questions

- 1. How can a scientist figure out the structure of people's mental representations?
- 2. How do people acquire their representations?

Principal Components Analysis (PCA)

- Computational Theory
 - find a low-dimensional subspace that preserves as much of the variance as possible
- Algorithm
 - based on the Singular Value Decomposition (SVD)

PCA and MDS

PCA on a raw feature matrix

Classical MDS on Euclidean distances between feature vectors

Applications: Politics

Courtesy of Stephen Weis. Used with permission.

Courtesy of Stephen Weis. Used with permission.

Applications: Personality

- The Big 5
 - Openness
 - Conscientiousness
 - Extraversion
 - Agreeableness
 - Neuroticism

Applications: Face Recognition

Original faces

Principal Components

Face Recognition

- PCA has been discussed as a model of human perception not just an engineering solution
 - Hancock, Burton and Bruce (1996). Face processing: human perception and principal components analysis

- New documents can be located in semantic space
- Similarity between documents is the angle between their vectors in semantic space

LSA: Applications

- Essay grading
- Synonym test

LSA as a cognitive theory

- Do brains really carry out SVD?
 - Irrelevant: the proposal is at the level of computational theory
- A solution to Fodor's problem?
 - Are the dimensions that LSA finds really new?

"striped and three borders": *conjunctive* concept

Figure by MIT OCW.

- Bruner Reading:
 - Raw features: texture (striped, black) shape (cross, circle) number
 - Disjunctive and conjunctive combinations allowed
- LSA:
 - Raw features: words
 - Linear combinations of raw features allowed (new dimensions are linear combinations of the raw features)

LSA as a cognitive theory

- Do brains really carry out SVD?
 - Irrelevant: the proposal is at the level of computational theory
- A solution to Fodor's problem?
 - Are the dimensions that LSA finds really new?
- What the heck do the dimensions even mean?

be non-negative

Dimensions found by NMF

Image removed due to copyright considerations. Please see:

Lee, D. D., and H. S. Seung. "Algorithms for non-negative matrix factorization." <u>Advances in Neural Information Processing 13</u>. Proc. NIPS*2000, MIT Press, 2001.

> See also Tom Griffiths' work on finding topics in text

Outline

- Spatial Representations
 - Multidimensional scaling
 - Principal component analysis
- Tree representations
 - Additive trees
 - Hierarchical agglomerative clustering
- Feature representations
 - Additive clustering

Image removed due to copyright considerations.

- Library of Congress system
- Q335.R86

```
Q: Science
Q1-Q385: General Science
Q300-336: Cybernetics
Q331-Q335: Artificial Intelligence
Q335.R86: Russell & Norvig, AIMA
```


Keil, Frank C. Concepts, Kinds, and Cognitive Development. Cambridge, MA: MIT Press, 1989.

• We find hierarchical representations very natural. Why ?

BUT

• Hierarchical representations are not always obvious. The work of Linnaeus was a real breakthrough.

Today:

• Trees with objects located only at leaf nodes

ADDTREE (Sattath and Tversky)

- Input: a dissimilarity matrix
- Output: an unrooted binary tree
- Computational Theory
 - d_{ij} : distance in a tree
 - δ_{ij} : human dissimilarity ratings

Want
$$d_{ij} \approx \delta_{ij}$$

- Algorithm:
 - search the space of trees using heuristics

ADDTREE: example

Image removed due to copyright considerations.

ADDTREE

- Tree-distance is a metric
- Can think of a tree as a space with an unusual kind of geometry

Hierarchical Clustering

- Input: a dissimilarity matrix
- Output: a rooted binary tree
- Computational Theory
 - -? (but see Kamvar, Klein and Manning, 2002)
- Algorithm:
 - Begin with one group per object
 - Merge the two closest groups
 - Continue until only one group remains

Hierarchical Clustering

D E F

C

B A

How close are two groups?

Single-link clustering

Complete-link clustering

Average-link clustering

Hierarchical Clustering: Example

Tree-building as feature discovery

Outline

- Spatial Representations
 - Multidimensional scaling
 - Principal component analysis
- Tree representations
 - Additive trees
 - Hierarchical agglomerative clustering
- Feature representations
 - Additive clustering

WARNING: additive clustering is not about trees

Additive Clustering

- Representation: an object is a collection of discrete features
- Additive clustering is about discovering features from similarity data

Additive clustering

$$s_{ij} = \sum_{k} w_k f_{ik} f_{jk}$$

- S_{ij} : similarity of stimuli i, j
- W_k : weight of cluster k
- f_{ik} : membership of stimulus *i* in cluster *k*
 - (1 if stimulus *i* in cluster *k*, 0 otherwise)

Equivalent to similarity as a weighted sum of common features (Tversky, 1977).

Additive clustering

 $S \approx FWF^T$

 $s_{ij} \approx \sum_{k} w_k f_{ik} f_{jk}$

Additive clustering for the integers 0-9:

$s_{ij} = \sum w_k f_{ik} f_{jk}$			
	k /		
Rank	Weight	Stimuli in cluster	Interpretation
		0 1 2 3 4 5 6 7 8 9	
1	.444	* * *	powers of two
2	.345	* * *	small numbers
3	.331	* * *	multiples of three
4	.291	* * * *	large numbers
5	.255	* * * * *	middle numbers
6	.216	* * * * *	odd numbers
7	.214	* * * *	smallish numbers
8	.172	* * * * *	largish numbers

General Questions

- We've seen several types of representations. How do you pick the right representation for a domain?
 - related to the statistical problem of model selection
 - to be discussed later

Next Week

• More complex representations