Knowledge Representation: Spaces, Trees, Features

Announcements

- Optional section 1: Introduction to Matlab
- Tonight, 8:00 pm
- Problem Set 1 is available

The best statistical graphic ever?

Image removed due to copyright considerations. Please see:
Tufte, Edward. The Visual Display of Quantitative Information.
Cheshire CT: Graphics Press, 2001. ISBN: 0961392142.

The worst statistical graphic ever?

Image removed due to copyright considerations. Please see:
Tufte, Edward. The Visual Display of Quantitative Information.
Cheshire CT: Graphics Press, 2001. ISBN: 0961392142.

Knowledge Representation

- A good representation should:
- be parsimonious
- pick out important features
- make common operations easy
- make less common operations possible

Mental Representations

- Pick a domain: say animals
- Consider everything you know about that domain.
- How is all of that knowledge organized?
- a list of facts?
- a collection of facts and rules?
- a database of statements in first-order logic?

Two Questions

1. How can a scientist figure out the structure of people's mental representations?
2. How do people acquire their representations?

Q: How can a scientist figure out the structure of people's mental representations?
A: Ask them for similarity ratings

objects

Q: How do people acquire their mental representations?
A: They build them from raw features - features that come for free

Outline

- Spatial Representations
- Multidimensional scaling
- Principal component analysis
- Tree representations
- Additive trees
- Hierarchical agglomerative clustering
- Feature representations
- Additive clustering

Multidimensional scaling (MDS)

Image removed due to copyright considerations.

Marr's three levels

- Level 1: Computational theory
- What is the goal of the computation, and what is the logic by which it is carried out?
- Level 2: Representation and algorithm
- How is information represented and processed to achieve the computational goal?
- Level 3: Hardware implementation
- How is the computation realized in physical or biological hardware?

MDS: Computational Theory

$d_{i j}:$ distance in a low-dimensional space
$\delta_{i j}$: human dissimilarity ratings

- Classical MDS:

$$
d_{i j} \approx \delta_{i j}
$$

- Metric MDS:

$$
d_{i j} \approx f\left(\delta_{i j}\right)
$$

- Non-metric MDS: rank order of the $d_{i j}$ should match rank order of the $\delta_{i j}$

MDS: Computational Theory

- Cost function
- Classical MDS: cost $=\sum_{i, j}\left(d_{i j}-\delta_{i j}\right)^{2}$

MDS: Algorithm

- Minimize the cost function using standard methods (solve an eigenproblem if possible: if not use gradient-based methods)

Choosing the dimensionality

- Elbow method

Image removed due to copyright considerations.

Colours

Image removed due to copyright considerations.

Phonemes

Image removed due to copyright considerations.

What MDS achieves

- Sometimes discovers meaningful dimensions
- Are the dimensions qualitatively new? Does MDS solve Fodor's problem?

What MDS doesn't achieve

- Solution (usually) invariant under rotation of the axes
- The algorithm doesn't know what the axes mean. We look at the low-dimensional plots and find meaning in them.

ideonomy.mit.edu

Image removed due to copyright considerations.
Please See: http://ideonomy.mit.edu/slides/16things.html

Patrick Gunkel

Two Questions

1. How can a scientist figure out the structure of people's mental representations?
2. How do people acquire their representations?

Principal Components Analysis (PCA)

PCA

Image removed due to copyright considerations.

PCA

Image removed due to copyright considerations.

PCA

Image removed due to copyright considerations.

PCA

- Computational Theory
- find a low-dimensional subspace that preserves as much of the variance as possible
- Algorithm
- based on the Singular Value Decomposition (SVD)

objects

Image removed due to copyright considerations.

SVD

objects

$=\square$
≈ 0

objects
-•••••

PCA and MDS

PCA on a raw feature matrix

Classical MDS on
Euclidean distances between
feature vectors

Applications: Politics

US Senate, 2003

Chaffee
Snowe

Breaux
Nelson
(Stephen Weis)

US Senate, 1990

Helms

Lott
Gramm

Hatfield

- Heflin
(Stephen Weis)

Applications: Personality

people
answers to questions on personality test

co-ordinates of people in personality space

- The Big 5
- Openness
- Conscientiousness
- Extraversion
- Agreeableness
- Neuroticism

Applications: Face Recognition

Original faces

Image removed due to copyright considerations.

Principal Components

Image removed due to copyright considerations.

Face Recognition

- PCA has been discussed as a model of human perception - not just an engineering solution
- Hancock, Burton and Bruce (1996). Face processing: human perception and principal components analysis

Latent Semantic Analysis (LSA)

- New documents can be located in semantic space
- Similarity between documents is the angle between their vectors in semantic space

LSA: Applications

- Essay grading
- Synonym test

LSA as a cognitive theory

- Do brains really carry out SVD?
- Irrelevant: the proposal is at the level of computational theory
- A solution to Fodor's problem?
- Are the dimensions that LSA finds really new?

Figure by MIT OCW.

- Bruner Reading:
- Raw features: texture (striped, black) shape (cross, circle) number
- Disjunctive and conjunctive combinations allowed
- LSA:
- Raw features: words
- Linear combinations of raw features allowed (new dimensions are linear combinations of the raw features)

LSA as a cognitive theory

- Do brains really carry out SVD?
- Irrelevant: the proposal is at the level of computational theory
- A solution to Fodor's problem?
- Are the dimensions that LSA finds really new?
- What the heck do the dimensions even mean?

Non-Negative Matrix Factorization objects

PCA:

entries can be negative

Dimensions found by NMF

Image removed due to copyright considerations. Please see:
Lee, D. D., and H. S. Seung. "Algorithms for non-negative matrix factorization."
Advances in Neural Information Processing 13. Proc. NIPS*2000, MIT Press, 2001.

See also Tom Griffiths' work on finding topics in text

Outline

- Spatial Representations
- Multidimensional scaling
- Principal component analysis
- Tree representations
- Additive trees
- Hierarchical agglomerative clustering
- Feature representations
- Additive clustering

Tree Representations

Image removed due to copyright considerations.

Tree Representations

- Library of Congress system
- Q335.R86

Q: Science
Q1-Q385: General Science
Q300-336: Cybernetics
Q331-Q335: Artificial Intelligence
Q335.R86: Russell \& Norvig, AIMA

Tree Representations

5-year-old’s
ontology

7-year-old's ontology

Tree Representations

- We find hierarchical representations very natural. Why?

BUT

- Hierarchical representations are not always obvious. The work of Linnaeus was a real breakthrough.

Today:

- Trees with objects located only at leaf nodes

ADDTREE (Sattath and Tversky)

- Input: a dissimilarity matrix
- Output: an unrooted binary tree
- Computational Theory
$d_{i j}:$ distance in a tree
$\delta_{i j}$: human dissimilarity ratings

$$
\text { Want } \quad d_{i j} \approx \delta_{i j}
$$

- Algorithm:
- search the space of trees using heuristics

ADDTREE: example

Image removed due to copyright considerations.

ADDTREE

- Tree-distance is a metric
- Can think of a tree as a space with an unusual kind of geometry

Hierarchical Clustering

- Input: a dissimilarity matrix
- Output: a rooted binary tree
- Computational Theory
- ? (but see Kamvar, Klein and Manning, 2002)
- Algorithm:
- Begin with one group per object
- Merge the two closest groups
- Continue until only one group remains

Hierarchical Clustering

D
 E
 F

$$
\begin{array}{ll}
\mathrm{B} & \mathrm{C}
\end{array}
$$

How close are two groups?

Single-link clustering
Complete-link clustering

Average-link clustering

Hierarchical Clustering: Example

Tree-building as feature discovery

primate
cetacean

Outline

- Spatial Representations
- Multidimensional scaling
- Principal component analysis
- Tree representations
- Additive trees
- Hierarchical agglomerative clustering
- Feature representations
- Additive clustering

Additive Clustering

- Representation: an object is a collection of discrete features
- eg Elephant = \{grey, wrinkly, has_trunk, is_animal ...\}
- Additive clustering is about discovering features from similarity data

Additive clustering

$$
s_{i j}=\sum_{k} w_{k} f_{i k} f_{j k}
$$

$s_{i j}$: similarity of stimuli i, j
w_{k} : weight of cluster k
$f_{i k}$: membership of stimulus i in cluster k
(1 if stimulus i in cluster $k, 0$ otherwise)
Equivalent to similarity as a weighted sum of common features (Tversky, 1977).

Additive clustering

$$
\begin{aligned}
& S \approx F W F^{T} \\
& s_{i j} \approx \sum_{k} w_{k} f_{i k} f_{j k}
\end{aligned}
$$

Additive clustering for the integers $0-9$:

General Questions

- We've seen several types of representations. How do you pick the right representation for a domain?
- related to the statistical problem of model selection
- to be discussed later

Next Week

- More complex representations

