Outline

- Non-parametric models for categorization: exemplars, neural networks
- Controlling complexity in statistical models

Bayesian classification

Image removed due to copyright considerations.

The task: Observe *x* generated from c_1 or c_2 , compute:

$$p(c_1 \mid x) = \frac{p(x \mid c_1) p(c_1)}{p(x \mid c_1) p(c_1) + p(x \mid c_2) p(c_2)}$$

Different approaches vary in how they represent $p(x|c_i)$.

Non-parametric approaches

- Allow more complex form for $p(x|c_j)$, to be determined by the data.
- E.g., kernel density estimation:

$$p(x | c_j) \propto \frac{1}{n} \sum_{k=1}^{n} e^{-\|x - x^k\|^2 / (2\sigma^2)}$$

- Equivalent to exemplar model
 - Observe *n* examples: $x^1, ..., x^k$
 - Smoothness ("specificity"): σ

$$p(x | c_j) \propto \frac{1}{n} \sum_{k=1}^n e^{-\|x - x^k\|^2 / (2\sigma^2)}$$

- Equivalent to exemplar model
 - Observe *n* examples: x^1, \ldots, x^k
 - Smoothness ("specificity"): σ

Image removed due to copyright considerations.

- Learning: Bayesian framework
 - Hypothesis space is all smooth density functions f.
 - Maximize $p(f | x^1, ..., x^k)$.
 - Prior p(f) favors larger σ .
 - Likelihood $p(x^1, ..., x^k | f)$ favors smaller σ .

Nearest neighbor classification

Image removed due to copyright considerations.

Theorem: In the limit of infinite data, classification according to nearest neighbor is approximately Bayes-optimal.

Nosofsky's exemplar model

• Motivating example:

01 O2X1 04 03 Before learning X2 **O5** X3 X4 X501 $)_{03}^{2}$ 04 X1 X2 After learning: **O**5 X3 X4 selective X5 attention

Nosofsky's exemplar model

- Math:
 - Probability of responding category J to stimulus i: Image removed due to copyright considerations.
 - Similarity of stimulus *i* to exemplar *j*:

Image removed due to copyright considerations.

– Distance from stimulus *i* to exemplar *j*:

Image removed due to copyright considerations.

 w_m : attentional weight for dimension $m \sim$ inverse variance

Concept learning experiments

• Simple artificial stimuli, e.g.

• Learn to discriminate members of two mutually exclusive categories, with repeated presentations of a small set of stimuli.

Six types of classifications:

Accurate fits to human data

How are attentional weights determined?

• By the modeler: tune to fit behavioral data

How are attentional weights determined?

- By the modeler: tune to fit behavioral data
- By the learner: *discriminative* learning
 - Maximize discriminability of the training set.

Generative vs. Discriminative Models

- Generative approach:
 - Separately model class-conditional densities $p(x | c_j)$ and priors $p(c_j)$.
 - Use Bayes' rule to compute posterior probabilities: $p(c_1 | x) = \frac{p(x | c_1) p(c_1)}{p(x | c_1) p(c_1) + p(x | c_2) p(c_2)}$
- Discriminative approach:
 - Directly model posterior probabilities $p(c_i | x)$

Generative vs. Discriminative

Discriminative methods based on function approximation

• Perceptrons

• Neural networks

• Support vector machines

Discriminative methods based on function approximation

• Perceptrons

Image removed due to copyright considerations.

 $y = \theta(w_1 x_1 + w_2 x_2)$ $\theta(z) = 1/(1 + \exp(-z))$

Weight space

The perceptron hypothesis space

• Linearly separable classes

Perceptron learning

• Gradient descent on error surface in weight space:

Perceptron learning

• Gradient descent on error surface in weight

space: $Error = y^* - y$ $y^* = correct output$ $E = \frac{1}{2} Error^2$ $y = \theta(\sum_j w_j x_j)$ $w_j \leftarrow w_j - \alpha \times \frac{\partial E}{\partial w_j}$

$$\frac{\partial E}{\partial w_j} = Error \times \frac{\partial Error}{\partial w_j} = -Error \times \frac{\partial y}{\partial w_j}$$

$$= -Error \times \theta'(\sum_{j} w_{j}x_{j}) \times x_{j} = -(y^{*} - y) \times x_{j} \times \theta'(\sum_{j} w_{j}x_{j})$$

Discriminative methods based on function approximation

• Neural networks

The benefit of hidden units

ridge = θ (sigmoid+sigmoid) b

 $bump = \theta(ridge+ridge)$

Neural network learning

• Gradient descent on error surface in weight space ("backpropagation"):

Neural network learning

• Gradient descent on error surface in weight space ("backpropagation"):

Backpropagation as a model of human learning?

- Kruschke: Are neural networks trained with backpropagation a good model of human category learning?
- Originally, backpropagation was not intended as a precise model of learning.
 - Rather, a tool for learning representations.
 - But does it learn the right kind of representations?

Two learning tasks

"Filtration": easy to learn

Image removed due to copyright considerations.

"Condensation": hard to learn

Human learning data

Conventional neural network

Model versus Data

ALCOVE network

Differences between the models

- Dimension-specific attentional weights
- Hidden unit activation functions

Model versus Data

Model versus Data

Image removed due to copyright considerations.

People

Backprop + attentional weights (c.f. ARD)

"Catastrophic forgetting"

• Stimuli for category-learning experiment

Human learning data

ALCOVE

Conventional neural network

Questions about neural networks

- Why do they have such a bad rap?
- To what extent are neural networks brainlike?
- They take a long time to train. Is that a good thing or a bad thing from the standpoint of cognitive modeling?