Outline

- Probabilistic models for unsupervised and semi-supervised category learning
- Nonparametric models for categorization: exemplars, neural networks

EM algorithm

- 0. Guess initial parameter values $\theta = \{\mu, \sigma, p(c_j)\}$.
- 1. "Expectation" step: Given parameter estimates, compute expected values of assignments $z_i^{(k)}$

$$h_{j}^{(k)} = p(c_{j} \mid \mathbf{x}^{(k)}; \theta) \propto \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{ij}}} e^{-(x_{i}^{(k)} - \mu_{ij})^{2}/(2\sigma_{ij}^{2})} p(c_{j})$$

2. "**Maximization**" step: Given expected assignments, solve for maximum likelihood parameter estimates:

$$\mu_{ij} = \frac{\sum_{k} h_j^{(k)} x_i^{(k)}}{\sum_{k} h_j^{(k)}} \qquad \sigma^2_{ij} = \frac{\sum_{k} h_j^{(k)} \left(x_i^{(k)} - \mu_{ij} \right)^2}{\sum_{k} h_j^{(k)}} \qquad p(c_j) = \sum_{k} h_j^{(k)}$$

What EM is really about

• Want to maximize $\log p(\mathbf{X}|\theta)$, e.g. $p(\mathbf{X}|\theta) = \prod_{k} \sum_{j} p(\mathbf{x}^{(k)} | c_j; \theta) p(c_j; \theta)$

What EM is really about

• Want to maximize $\log p(\mathbf{X}|\theta)$, e.g. $\log p(\mathbf{X}|\theta) = \sum_{k} \log \sum_{j} p(\mathbf{x}^{(k)} | c_j; \theta) p(c_j; \theta)$

What EM is really about

- Want to maximize $\log p(\mathbf{X}|\theta)$, e.g. $\log p(\mathbf{X}|\theta) = \sum_{k} \log \sum_{j} p(\mathbf{x}^{(k)} | c_j; \theta) p(c_j; \theta)$
- Instead, maximize expected value of the "complete data" loglikelihood, $\log p(\mathbf{X}, \mathbf{Z}|\theta)$: $\log p(\mathbf{X}, \mathbf{Z}|\theta) = \sum_{k} \sum_{j} z_{j}^{(k)} \log p(\mathbf{x}^{(k)} | c_{j}; \theta) + \log p(c_{j}; \theta)$

- E-step: Compute expectation

$$Q(\theta \mid \theta^{(t)}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \theta^{(t)}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta)$$

- **M-step:** Maximize $\theta^{(t+1)} = \underset{\theta}{\arg \max} Q(\theta | \theta^{(t)})$

Good features of EM

- Convergence
 - Guaranteed to converge to at least a local maximum of the likelihood.
 - Likelihood is non-decreasing across iterations (useful for debugging).
- Efficiency
 - Convergence usually occurs within a few iterations (super-linear).
- Generality
 - Can be defined for many simple probabilistic models.

Limitations of EM

- Local minima
 - E.g., one component poorly fits two clusters, while two components split up a single cluster.
- Degeneracies
 - Two components may merge.
 - A component may lock onto just one data point, with variance going to zero.
- How do you choose number of clusters?
- May be intractable for complex models.

Mixture models for binary data

- Data: $\mathbf{x}^{(k)} = \{x_1^{(k)}, \dots, x_D^{(k)}\}, x_i^{(k)} \in \{0, 1\}$
- Probabilistic model: mixture of Bernoulli distributions (coin flips).

$$= \prod_{k} \sum_{j} p(\mathbf{x}^{(k)} | c_{j}; \theta) p(c_{j}; \theta)$$

$$=\prod_{k}\sum_{j}p(c_{j})\prod_{i}\mu_{ij}x_{i}^{(k)}(1-\mu_{ij})^{(1-x_{i}^{(k)})}$$

EM algorithm

- 0. Guess initial parameter values $\theta = \{\mu, p(c_j)\}$.
- 1. "Expectation" step: Given parameter estimates, compute expected values of assignments $z_i^{(k)}$

$$h_{j}^{(k)} = p(c_{j} \mid \mathbf{x}^{(k)}; \theta) \propto p(c_{j}) \prod_{i} \mu_{ij} x_{i}^{(k)} (1 - \mu_{ij})^{(1 - x_{i}^{(k)})}$$

2. "**Maximization**" step: Given expected assignments, solve for maximum likelihood parameter estimates:

$$\mu_{ij} = \frac{\sum_{k} h_{j}^{(k)} x_{i}^{(k)}}{\sum_{k} h_{j}^{(k)}} \qquad p(c_{j}) = \sum_{k} h_{j}^{(k)}$$

Applications of EM to human learning

- Chicken and egg problems
 - Categories, prototypes
 - Categories, similarity metric (feature weights)

Additive clustering for the integers 0-9:

$$s_{ij} = \sum_{k} w_k f_{ik} f_{jk}$$

Rank	Weight	Stimuli in cluster]
		0 1	2	3	4	5	6	7	8	9		
1	.444		*		*				*			1
2	.345	* *	*									2
3	.331			*			*			*		1
4	.291						*	*	*	*		1
5	.255		*	*	*	*	*					1
6	.216	*	·	*		*		*		*		(
7	.214	*	* *	*	*							S
8	.172				*	*	*	*	*			1

Interpretation

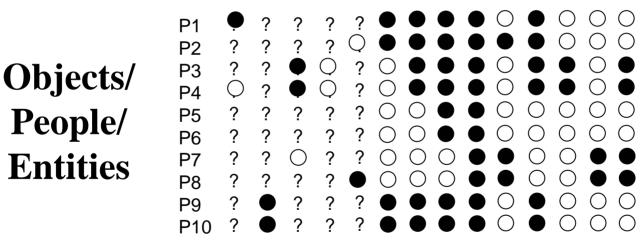
powers of two small numbers multiples of three large numbers middle numbers odd numbers smallish numbers largish numbers

Applications of EM to human learning

- Chicken and egg problems
 - Categories, prototypes
 - Categories, similarity metric (feature weights)
 - Categories, outliers
 - Categories, unobserved features

Learning as interpolation of missing data

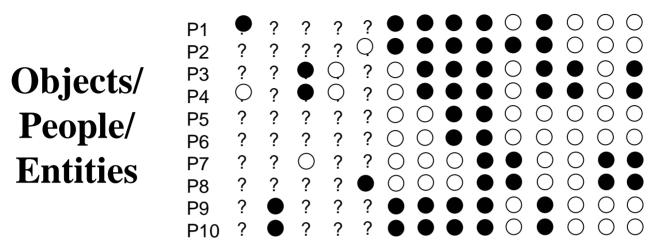
• Interpolating a sparse binary matrix:



F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Features/Concepts/Attributes

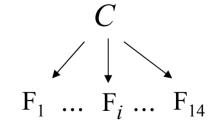
• Interpolating a sparse binary matrix:



F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Features/Concepts/Attributes

- Assume mixture of Bernoulli distributions for objects P_k :

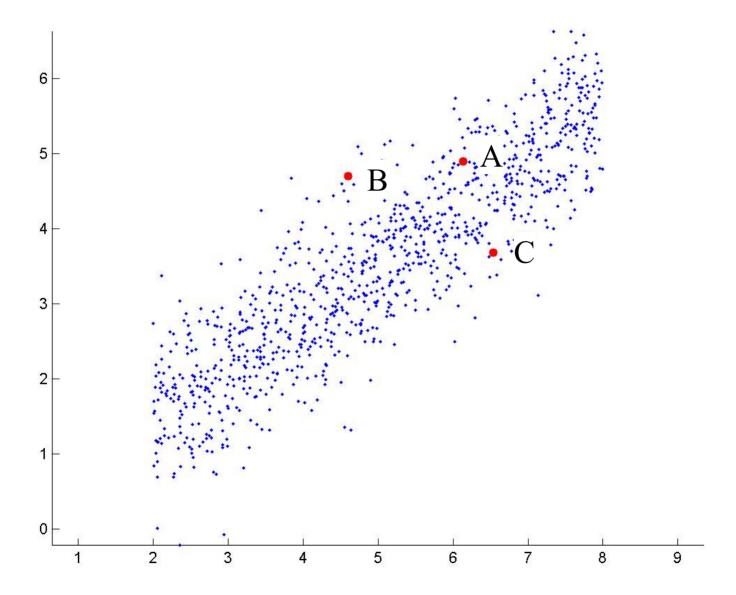


 Learn with EM, treating both class labels and unobserved features as missing data.

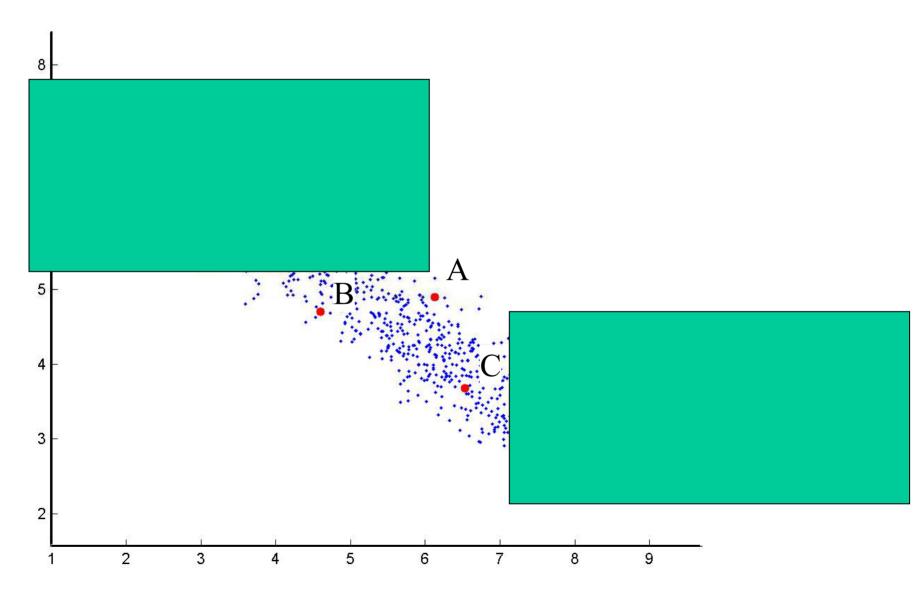
Applications of EM to human learning

- Chicken and egg problems
 - Categories, prototypes
 - Categories, similarity metric (feature weights)
 - Categories, outliers
 - Categories, unobserved features
 - Theories, similarity metric (feature weights)

Is B or C more "similar" to A?



Is B or C more "similar" to A?



EM for factor analysis

- A simple causal theory
 - Generate points at random positions z on a line segment. (Unobserved "latent" data)
 - Linearly embed these points (with slope *a*, intercept *b*) in two dimensions. (*Observed data*)
 - Add Gaussian noise to one of the two observed dimensions (x-dim or y-dim).
- Examples:
 - Sensory integration
 - Weighing the advice of experts

EM for factor analysis

- A simple causal theory
 - Generate points at random positions z on a line segment. (Unobserved "latent" data)
 - Linearly embed these points (with slope *a*, intercept *b*) in two dimensions. (*Observed data*)
 - Add Gaussian noise to one of the two observed dimensions (x-dim or y-dim).
- Goal of learning:
 - Estimate parameters: *a*, *b*, dimension of noise
 (*x*-dim or *y*-dim)
 - Infer unobserved data: *z*

Applications of EM to human learning

- Chicken and egg problems
 - Categories, prototypes
 - Categories, similarity metric (feature weights)
 - Categories, unobserved features
 - Categories, outliers
 - Theories, similarity metric (feature weights)
 - Learning in Bayes nets with hidden variables
 - Others?

Fried and Holyoak (1984)

- Can people learn probabilistic categories without labels?
- How does learning with labels differ from learning without labels?
- What kind of concept is learned?
 - Prototype (mean)
 - Prototype + variability (mean + variances)
- Is categorization close to ideal* of a Gaussian mixture model?

Fried and Holyoak stimuli

Image removed due to copyright considerations. Please see:

Fried, L. S., and K. J. Holyoak. "Induction of Category Distributions: A Framework for Classification Learning." *Journal of Experimental Psychology: Learning, Memory and Cognition* 10 (1984): 234-257.

Fried and Holyoak, Exp. 4

Image removed due to copyright considerations. Please see:

Fried, L. S., and K. J. Holyoak. "Induction of Category Distributions: A Framework for Classification Learning." *Journal of Experimental Psychology: Learning, Memory and Cognition* 10 (1984): 234-257.

Fried and Holyoak, Exp. 2

Image removed due to copyright considerations. Please see:

Fried, L. S., and K. J. Holyoak. "Induction of Category Distributions: A Framework for Classification Learning." *Journal of Experimental Psychology: Learning, Memory and Cognition* 10 (1984): 234-257.

Fried and Holyoak (1984)

- Can people learn probabilistic categories without labels? Yes.
- How does learning with labels differ from learning without labels? It's better.
- What kind of concept is learned?
 - Prototype (mean)
 - Prototype + variability (mean + variances)
- Is categorization close to ideal* of a Gaussian mixture model? Yes.

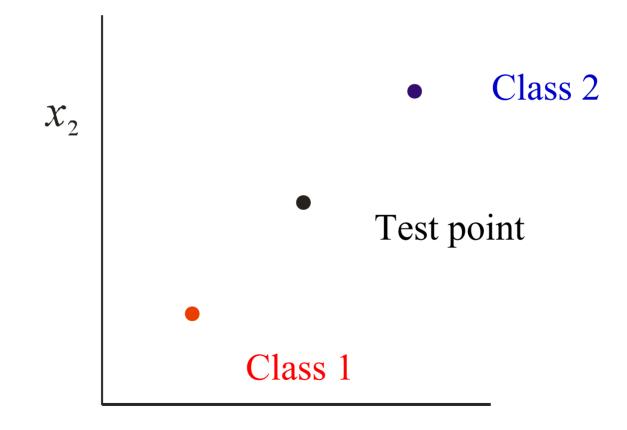
Relevance for human cognition

- How important are these three paradigms for human category learning?
 - Labeled examples
 - Unlabeled examples
 - Unlabeled examples but known # of classes
- Other ways of combining labeled and unlabeled examples that are worth pursuing?

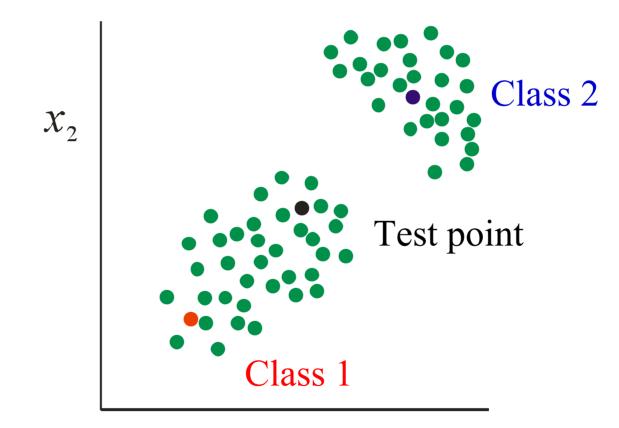
Semi-supervised learning

- Learning with many unlabeled examples and a small number of labeled examples.
- Important area of current work in machine learning.
 - E.g., learning about the web (or any large corpus)
- Natural situation in human learning.
 - E.g., word learning
 - Not much research here though....

The benefit of unlabelled data



The benefit of unlabelled data

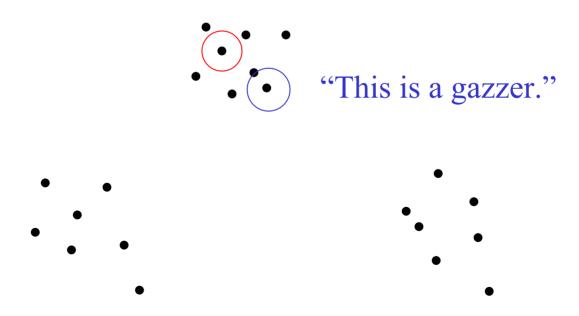


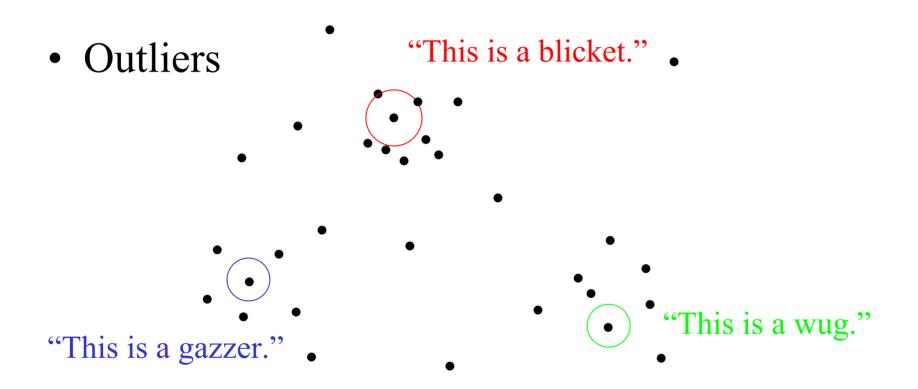
Is this really a new problem?

• Why not just do unsupervised clustering first and then label the clusters?

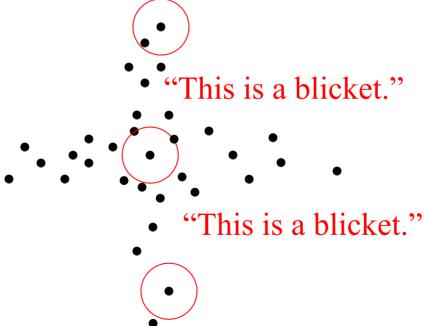
• Concept labels inconsistent with clusters

"This is a blicket."



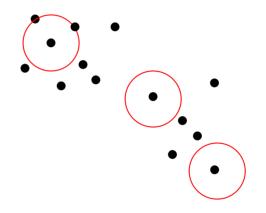


Overlapping clusters "This is a blicket."

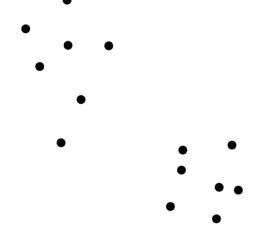


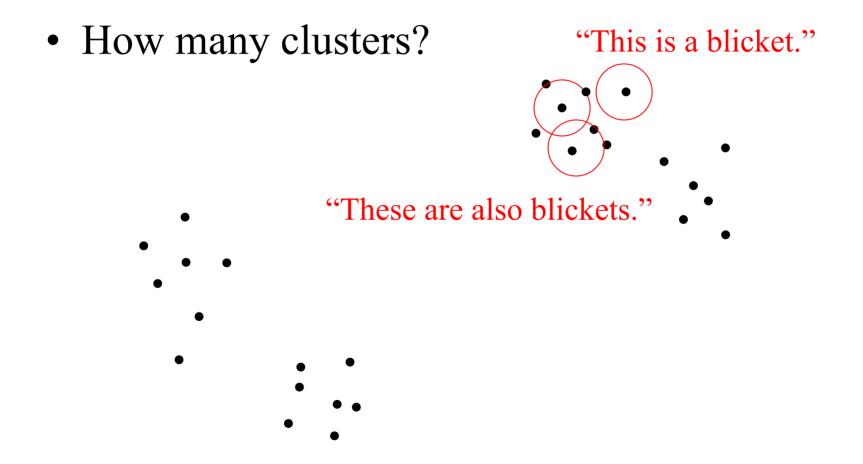
• How many clusters?

"This is a blicket."



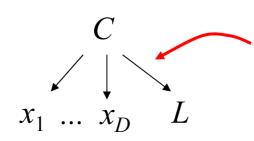
"These are also blickets."





Semi-supervised learning

- Learning with many unlabeled examples and a small number of labeled examples.
- Approaches based on EM with mixtures
 - Identify each concept with one mixture component.
 - Labels serve to anchor class assignments in E-step.

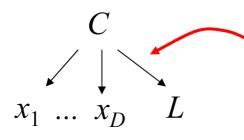


Deterministic (1-to-1) link

(Could also be many-to-1.)

Semi-supervised learning

- Learning with many unlabeled examples and a small number of labeled examples.
- Approaches based on EM with mixtures
 - Treat concept labels as separate features, conditionally independent of observed features given classes.
 - e.g., Ghahramani and Jordan (cf. Anderson).



Probabilistic (Bernoulli) link

Other approaches to semisupervised learning

- Graph-based
 - Szummer & Jaakkola
 - Zhu, Ghahramani & Lafferty
 - Belkin & Niyogi
 - Blum & Chawla
- Tree-based
 - Tenenbaum and Xu; Kemp, Tenenbaum, et al.

Graph-based semi-supervised learning

E.g., Class labeling function is smooth over a graph of *k*-nearest neighbors:

Tree-based semi-supervised learning

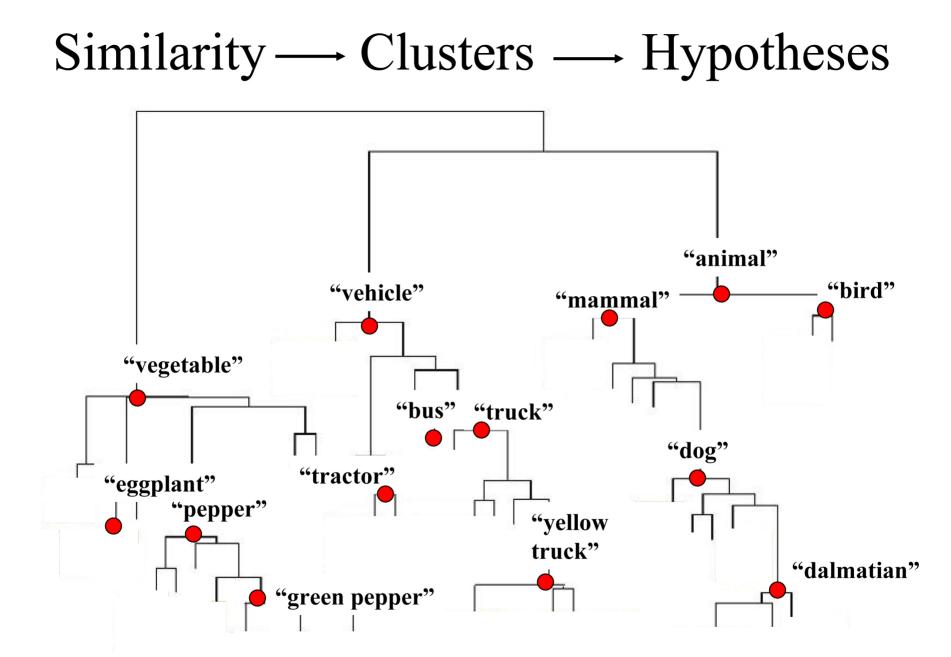
• A motivating problem: learning words for kinds of objects

Image removed due to copyright considerations.

What does the word "dog" refer to?

- All (and only) dogs?
- All mammals?
- All animals?
- All labradors?
- All yellow labradors?

- Undetached dog parts?
- All dogs plus Silver?
- All yellow things?
- All running things?
- . . .



Bayesian model of word learning

- *H*: Hypotheses correspond to taxonomic clusters
 - $h_1 =$ "all (and only) dogs" $h_3 =$ "all animals"
 - $-h_2 =$ "all mammals"
- $-h_4 =$ "all labradors"

_ ...

- Same model as for learning number concepts, but with two new features specific to this task:
 - Prior favors more distinctive taxonomic clusters.
 - Prior favors naming categories at a privileged (basic) level.

Image removed due to copyright considerations.

Bayes (with basic-level bias)

Bayes (without basic-level bias)

The objects of planet Gazoob

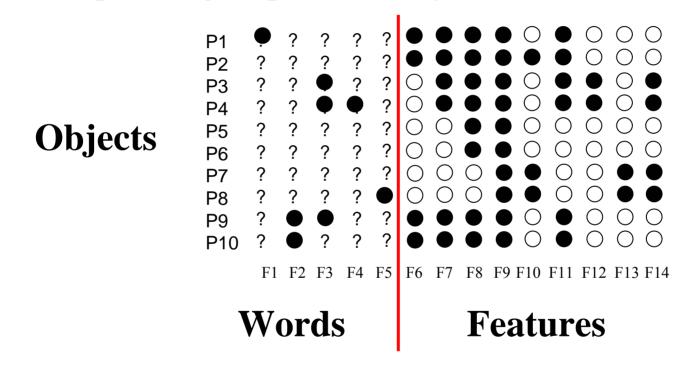
Adults:

Image removed due to copyright considerations.

Bayes: (with basic-level bias)

Semi-supervised learning?

• Interpolating a sparse binary matrix:



- Use features to infer tree or graph over objects.
- Use tree or graph to generate priors for the extensions of words.