Outline

- Bayesian Ockham's Razor
- Bayes nets (directed graphical models)
- Computational motivation: tractable reasoning
- Cognitive motivation: causal reasoning
- Sampling methods for approximate inference

Coin flipping

- Comparing two simple hypotheses

$$
-P(\mathrm{H})=0.5 \text { vs. } P(\mathrm{H})=1.0
$$

- Comparing simple and complex hypotheses
$-P(\mathrm{H})=0.5$ vs. $P(\mathrm{H})=\theta$
- Comparing infinitely many hypotheses
$-P(\mathrm{H})=\theta:$ Infer θ

Comparing simple and complex hypotheses

(d) d d_{2} d d_{4} vs.

Fair coin, $P(H)=0.5$

$P(\mathrm{H})=\theta$

- Which provides a better account of the data: the simple hypothesis of a fair coin, or the complex hypothesis that $P(\mathrm{H})=\theta$?

Comparing simple and complex hypotheses

- $P(\mathrm{H})=\theta$ is more complex than $P(\mathrm{H})=0.5$ in two ways:
- $P(\mathrm{H})=0.5$ is a special case of $P(\mathrm{H})=\theta$
- for any observed sequence D, we can choose θ such that D is more probable than if $P(\mathrm{H})=0.5$

Bernoulli Distribution: $P(D \mid \theta)=\theta^{n}(1-\theta)^{N-n}$ $n=$ \# of heads in D $N=\#$ of flips in D

Comparing simple and complex hypotheses

$D=$ ннннн

Comparing simple and complex hypotheses

$D=$ HHHHH

Comparing simple and complex hypotheses

Comparing simple and complex hypotheses

- $P(\mathrm{H})=\theta$ is more complex than $P(\mathrm{H})=0.5$ in two ways:
$-P(\mathrm{H})=0.5$ is a special case of $P(\mathrm{H})=\theta$
- for any observed sequence X, we can choose θ such that X is more probable than if $P(\mathrm{H})=0.5$
- How can we deal with this?
- Some version of Ockham's razor:?
- Bayes: just the law of conservation of belief!

Comparing simple and complex hypotheses

$$
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{2} \mid D\right)}=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)} \times \frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}
$$

Computing $P\left(D \mid H_{l}\right)$ is easy:

$$
P\left(D \mid H_{1}\right)=(1 / 2)^{n}(1-1 / 2)^{N-n}=1 / 2^{N}
$$

Compute $P\left(D \mid H_{2}\right)$ by averaging over θ :

$$
P\left(D \mid H_{2}\right)=\int_{0}^{1} P(D \mid \theta) p\left(\theta \mid H_{2}\right) d \theta
$$

Comparing simple and complex hypotheses

$$
\frac{P\left(H_{\mid} \mid D\right)}{P\left(H_{2} \mid D\right)}=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)} \times \frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}
$$

Computing $P\left(D \mid H_{l}\right)$ is easy:

$$
P\left(D \mid H_{1}\right)=(1 / 2)^{n}(1-1 / 2)^{N-n}=1 / 2^{N}
$$

Compute $P\left(D \mid H_{2}\right)$ by averaging over θ :

$$
P\left(D \mid H_{2}\right)=\int_{0}^{1} P(D \mid \theta) d \theta \quad \begin{gathered}
\text { (assume uniform } \\
\text { prior on } \theta \text {) }
\end{gathered}
$$

Comparing simple and complex hypotheses

$$
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{2} \mid D\right)}=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)} \times \frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}
$$

Computing $P\left(D \mid H_{l}\right)$ is easy:

$$
P\left(D \mid H_{1}\right)=(1 / 2)^{n}(1-1 / 2)^{N-n}=1 / 2^{N}
$$

Compute $P\left(D \mid H_{2}\right)$ by averaging over θ :

$$
P\left(D \mid H_{2}\right)=\int_{0}^{1} \theta^{n}(1-\theta)^{N-n} d \theta
$$

Comparing simple and complex hypotheses

$$
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{2} \mid D\right)}=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)} \times \frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}
$$

Computing $P\left(D \mid H_{l}\right)$ is easy:

$$
P\left(D \mid H_{1}\right)=(1 / 2)^{n}(1-1 / 2)^{N-n}=1 / 2^{N}
$$

Compute $P\left(D \mid H_{2}\right)$ by averaging over θ :

$$
P\left(D \mid H_{2}\right)=\int_{0}^{1} \theta^{n}(1-\theta)^{N-n} d \theta=\frac{n!(N-n)!}{(N+1)!}
$$

(How is this an average?)

- Consider a discrete approximation with 11 values of θ, from 0 to 1 in steps of $1 / 10$:
$P\left(D \mid H_{2}\right)=\sum_{i=0}^{10} P(D \mid \theta=i / 10) p\left(\theta=i / 10 \mid H_{2}\right)$
$P\left(D \mid H_{2}\right)=\sum_{i=0}^{10} P(D \mid \theta=i / 10)(1 / 11)$

$$
\text { (c.f., } \left.P\left(D \mid H_{2}\right)=\int_{0}^{1} P(D \mid \theta) d \theta\right)
$$

Comparing simple and complex hypotheses

$D=$ HHHHH

Comparing simple and complex hypotheses

$D=$ нHнHн

Law of conservation of belief

$$
\sum_{i} P\left(X=x_{i}\right)=1
$$

- Two different stages
- Prior over model parameter:

$$
\int_{0}^{1} p\left(\theta \mid H_{2}\right) d \theta=1
$$

In a model with a wider range of parameter values, each setting of the parameters contributes less to the model predictions.

Law of conservation of belief

$$
\sum_{i} P\left(X=x_{i}\right)=1
$$

- Two different stages
- Prior over model parameter:

$$
\int_{0}^{1} p\left(\theta \mid H_{2}\right) d \theta=1
$$

- Likelihood (probability over data):
$\sum_{d} P\left(D=d \mid H_{2}\right)=\sum_{d} \int_{\theta} P(D=d \mid \theta) p\left(\theta \mid H_{2}\right) d \theta=1$
A model that predicts some data sets very well must predict others very poorly.

Bayesian Ockham's Razor

Image removed due to copyright considerations.

Two alternative models

- Fudged Newton
- A new planet: Vulcan?
- Matter rings around the sun?
- Sun is slightly lopsided.
- Exponent in Universal law of gravitation is
$2+\varepsilon$ instead of 2 .
- Each version of this hypothesis has a fudge factor, whose most likely value we can estimate empirically

Image removed due to copyright considerations.

- Simplifying assumption: predictions of fudged Newton are Gaussian around 0 .

More formally....

ε : fudge factor

Image removed due to copyright considerations.

$$
p(d \mid M)=\int_{\varepsilon} p(d, \varepsilon \mid M)
$$

$$
=\int_{\varepsilon} p(d \mid \varepsilon, M) p(\varepsilon \mid M)
$$

$$
\leq \max _{\varepsilon} p(d \mid \varepsilon, M)
$$

Two alternative models

- Fudged Newton
- Einstein: General Relativity + experimental error ($+/-2$ arc seconds/century).

Comparing the models

Image removed due to copyright considerations.

Where is Occam's razor?

- Why not a more "complex" fudge, in which the Gaussian can vary in both mean and variance?

Image removed due to copyright considerations.

Bayesian Occam's razor

- Recall: predictions of a model are the weighted average over all parameter values.

$$
p(d \mid M)=\int_{\mu, \sigma} p(d \mid \mu, \sigma, M) p(\mu \mid M) p(\sigma \mid M) d \mu d \sigma
$$

Image removed due to copyright considerations.

- Only a small set of parameter values fit the data well, so average fit is poor.

Law of conservation of belief

$$
\sum_{i} P\left(X=x_{i}\right)=1
$$

- Two different stages
- Priors over model parameters:

$$
\int_{\mu, \sigma} p(\mu, \sigma \mid M) d \mu d \sigma=1
$$

- Likelihood (probability over data):
$\int_{x} p(x \mid M) d x=\int_{x \mu, \sigma} \int_{\mu} p(x \mid \mu, \sigma, M) p(\mu, \sigma \mid M) d \mu d \sigma d x=1$
A model that can predict many possible data sets must assign each of them low probability.

Bayesian Occam's Razor

Figure by MIT OCW.
For any model $M, \sum_{\text {all } d \in D} p(D=d \mid M)=1$

Ockham's Razor in curve fitting

Figure by MIT OCW.

Figure by MIT OCW.

A model that can predict many possible data sets must assign each of them low probability.

Hierarchical prior

1 st order poly

3rd order poly

Likelihood function for regression

- Assume y is a linear function of x plus Gaussian noise:

Image removed due to copyright considerations.

- Linear regression is maximum likelihood: Find the function $f: x \rightarrow y$ that makes the data most likely.

Likelihood function for regression

- Assume y is a linear function of x plus Gaussian noise:

Image removed due to copyright considerations.

- Linear regression is maximum likelihood: Find the function $f: x \rightarrow y$ that makes the data most likely.

Likelihood function for regression

- Assume y is a linear function of x plus Gaussian noise:

Image removed due to copyright considerations.

- Not the maximum likelihood function....

Figure by MIT OCW.

For best fitting version of each model:

Prior

high
medium
very very very
very low

Likelihood

low
high
very high

Some questions

- Is the Bayesian Ockham's razor "purely objective"?

Some questions

- Is the Bayesian Ockham's razor "purely objective"? No.
- Priors matter. (What about uninformative priors?)
- Choice of description language/basis functions/hypothesis classes matters.
- Classes of hypotheses + priors = theory. (c.f. Martian grue, coin flipping)
- What do we gain from Bayes over conventional Ockham's razor?
- What do we gain from Bayes over conventional Ockham's razor?
- Isolates all the subjectivity in the choice of hypothesis space and priors
- Gives a canonical way to measure simplicity.
- A common currency for trading off simplicity and fit to the data: probability.
- A rigorous basis for the intuition that "the simplest model that fits is most likely to be true".
- Measure of complexity not just \# of parameters.
- Depends on functional form of the model

Three one-parameter models for 10-bit binary sequences

- Model 1:
- Choose parameter α between 0 and 1 .
- Round (10* α) 0's followed by [10-Round(10* α)] 1's.
- Model 2:
- Choose parameter α between 0 and 1 .
- Draw 10 samples from Bernoulli distribution (weighted coin flips) with parameter α.
- Model 3:
- Choose parameter α between 0 and 1 .
- Convert-to-binary($\operatorname{Round}\left(2^{\wedge} 10^{*} \alpha\right)$).
- What do we gain from Bayes over conventional Ockham's razor?
- Isolates all the subjectivity in the choice of hypothesis space and priors
- Gives a canonical way to measure simplicity.
- A common currency for trading off complexity and fit to the data: probability.
- A rigorous basis for the intuition that "the simplest model that fits is most likely to be true".
- Measure of complexity not just \# of parameters.
- Depends on functional form of the model
- Depends on precise shape of priors (e.g., different degrees of smoothness)

Two infinite-parameter models for regression

Figure by MIT OCW.

Outline

- Bayesian Ockham's Razor
- Bayes nets (directed graphical models)
- Computational motivation: tractable reasoning
- Cognitive motivation: causal reasoning
- Sampling methods for approximate inference

Directed graphical models

- Consist of
- a set of nodes
- a set of edges

- a conditional probability distribution for each node, conditioned on its parents, multiplied together to yield the distribution over variables
- Constrained to directed acyclic graphs (DAG)
- AKA: Bayesian networks, Bayes nets

Undirected graphical models

- Consist of
- a set of nodes
- a set of edges

- a potential for each clique, multiplied together to yield the distribution over variables
- Examples
- statistical physics: Ising model
- early neural networks (e.g. Boltzmann machines)
- low- and mid-level vision

Properties of Bayesian networks

- Efficient representation and inference
- exploiting dependency structure makes it easier to work with distributions over many variables
- Causal reasoning
- directed representations elucidates the role of causal structure in learning and reasoning
- model for non-monotonic reasoning (esp. "explaining away" or causal discounting).
- reasoning about effects of interventions (exogenous actions on a causal system)

Efficient representation and inference

- Three binary variables: Cavity, Toothache, Catch

Efficient representation and inference

- Three binary variables: Cavity, Toothache, Catch
- Specifying $P($ Cavity, Toothache, Catch $)$ requires 7 parameters.
- e.g., 1 for each set of values: $P(c a v$, ache, catch $)$, $P(c a v$, ache,$\neg c a t c h), \ldots$, minus 1 because it's a probability distribution
- e.g., chain of conditional probabilities:
$P(c a v), P(a c h e \mid c a v), P(a c h e \mid \neg c a v), P(c a t c h \mid a c h e, c a v)$,
$P($ catch \mid ache,$\neg c a v), P($ catch $\mid \neg a c h e, c a v), P($ catch $\mid \neg a c h e, \neg c a v)$

Efficient representation and inference

- Three binary variables: Cavity, Toothache, Catch
- Specifying $P($ Cavity, Toothache, Catch $)$ requires 7 parameters.
- With n variables, we need $2^{n}-1$ parameters
- Here $n=3$. Realistically, many more: X-ray, diet, oral hygiene, personality,
- Problems:
- Intractable storage, computation, and learning
- Doesn't really correspond to the world's structure, or what we know of the world's structure.

Conditional independence

- Probabilistically: all three variables are dependent, but Toothache and Catch are independent given the presence or absence of Cavity.
- Causally: Toothache and Catch are both effects of Cavity, via independent causal mechanisms.

Conditional independence

- Probabilistically: all three variables are dependent, but Toothache and Catch are independent given the presence or absence of Cavity.
- Causally: Toothache and Catch are both effects of Cavity, via independent causal mechanisms.
- In probabilistic terms: [Without conditional independence]

$$
\begin{aligned}
P(\text { ache } \wedge c a t c h \mid c a v) & =P(\text { ache } \mid \text { cav }) P(\text { catch } \mid \text { ache }, \text { cav }) \\
P(\neg a c h e \wedge c a t c h \mid c a v) & =P(\neg a c h e \mid c a v) P(\text { catch } \mid \neg a c h e, c a v) \\
& =[1-P(\text { ache } \mid c a v)] P(\text { catch } \mid \neg a c h e, c a v)
\end{aligned}
$$

Conditional independence

- Probabilistically: all three variables are dependent, but Toothache and Catch are independent given the presence or absence of Cavity.
- Causally: Toothache and Catch are both effects of Cavity, via independent causal mechanisms.
- In probabilistic terms: [With conditional independence]

$$
\begin{aligned}
P(\text { ache } \wedge \text { catch } \mid \text { cav }) & =P(\text { ache } \mid \text { cav }) P(\text { catch } \mid \text { cav }) \\
P(\neg \text { ache } \wedge \text { catch } \mid \text { cav }) & =P(\neg \text { ache } \mid \text { cav }) P(\text { catch } \mid \text { cav }) \\
& =[1-P(\text { ache } \mid \text { cav })] P(\text { catch } \mid \text { cav })
\end{aligned}
$$

- With n pieces of evidence, x_{1}, \ldots, x_{n}, we need $2 n$ conditional probabilities: $P\left(x_{i} \mid c a v\right), P\left(x_{i} \mid \neg c a v\right)$

A simple Bayes net

- Graphical representation of relations between a set of random variables:

- Causal interpretation: independent local mechanisms
- Probabilistic interpretation: factorizing complex terms

$$
\begin{aligned}
P(A, B, C) & =\prod_{V \in\{A, B, C\}} P(V \mid \operatorname{parents}[V]) \\
P(\text { Ache }, \text { Catch }, C a v) & =P(\text { Ache }, \text { Catch } \mid \text { Cav }) P(\text { Cav }) \\
& =P(\text { Ache } \mid \text { Cav }) P(\text { Catch } \mid \text { Cav }) P(\text { Cav })
\end{aligned}
$$

A more complex system

On time to work

- Joint distribution sufficient for any inference:

$$
P(B, R, I, G, S, O)=P(B) P(R \mid B) P(I \mid B) P(G) P(S \mid I, G) P(O \mid S)
$$

$$
P(O \mid G)=\frac{P(O, G)}{P(G)}=\frac{\sum_{B, R, I, S} P(B, R, I, G, S, O)}{P(G)} \quad \begin{array}{|l|}
\hline P(A)=\sum_{B} P(A, B) \\
\text { "marginalization" }
\end{array}
$$

A more complex system

- Joint distribution sufficient for any inference:
$P(B, R, I, G, S, O)=P(B) P(R \mid B) P(I \mid B) P(G) P(S \mid I, G) P(O \mid S)$
$P(O \mid G)=\frac{P(O, G)}{P(G)}=\frac{\sum_{B, R, I, S} P(B) P(R \mid B) P(I \mid B) P(G) P(S \mid I, G) P(O \mid S)}{P(G)}$

A more complex system

- Joint distribution sufficient for any inference:
$P(B, R, I, G, S, O)=P(B) P(R \mid B) P(I \mid B) P(G) P(S \mid I, G) P(O \mid S)$

$$
P(O \mid G)=\frac{P(O, G)}{P(G)}=\sum_{S}\left(\sum_{B, I} P(B) P(I \mid B) P(S \mid I, G)\right) P(O \mid S)
$$

A more complex system

- Joint distribution sufficient for any inference:
$P(B, R, I, G, S, O)=P(B) P(R \mid B) P(I \mid B) P(G) P(S \mid I, G) P(O \mid S)$
- General inference algorithms via local computations
- for graphs without loops: belief propagation
- in general: variable elimination, junction tree

More concrete representation

More concrete representation

Parameterizing the CPT

Size of CPT is exponential in number of parents. Often use a simpler parameterization based on knowledge of how causes interact.

Parameterizing the CPT

Size of CPT is exponential in number of parents. Often use a simpler parameterization based on knowledge of how causes interact.

- Logical OR: Independent deterministic causes

Parameterizing the CPT

Size of CPT is exponential in number of parents. Often use a simpler parameterization based on knowledge of how causes interact.

- Noisy OR: Independent probabilistic causes

Parameterizing the CPT

Size of CPT is exponential in number of parents. Often use a simpler parameterization based on knowledge of how causes interact.

- AND: cause + enabling condition

Parameterizing the CPT

Size of CPT is exponential in number of parents. Often use a simpler parametrization based on knowledge of how causes interact.

- Logistic: Independent probabilistic causes with varying strengths w_{i} and a threshold θ

$$
\begin{array}{|lll|}
\hline C 1 & C 2 & P(P a \mid C 1, C 2) \\
\hline 0 & 0 & 1 /[1+\exp (\theta)] \\
0 & 1 & 1 /\left[1+\exp \left(\theta-w_{1}\right)\right] \\
1 & 0 & 1 /\left[1+\exp \left(\theta-w_{2}\right)\right] \\
1 & 1 & 1 /\left[1+\exp \left(\theta-w_{1}-w_{2}\right)\right] \\
\hline
\end{array}
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

A priori, no correlation between B and E :

$$
P(B, E)=\sum_{A} P(B, E, A)
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

A priori, no correlation between B and E :

$$
P(B, E)=\sum_{A} P(A \mid B, E) P(B) P(E)
$$

$$
P(A, B, C)=\prod_{V \in\{A, B, C\}} P(V \mid \text { parents }[V])
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

A priori, no correlation between B and E :

$$
\begin{aligned}
P(B, E)= & \sum_{A} P(A \mid B, E) P(B) P(E) \\
& =1, \text { for any values of } B \text { and } E
\end{aligned}
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

A priori, no correlation between B and E :

$$
P(B, E)=P(B) P(E)
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

After observing $A=1 \ldots$

$$
P(B, E \mid A=1)=\frac{P(A=1 \mid B, E) P(B) P(E)}{P(A=1)}
$$

$$
P(B)=P(E)=1 / 2
$$

$$
\propto P(A=1 \mid B, E) P(B) P(E)
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

After observing $A=1 \ldots$

$$
P(B, E \mid A=1) \propto P(A=1 \mid B, E)
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

After observing $A=1 \ldots$
$\ldots P(B \mid A=1)=2 / 3$
B and E are anti-correlated

$$
P(B, E \mid A=1) \propto P(A=1 \mid B, E)
$$

Explaining away

- Logical OR: Independent deterministic causes

B	E	$P(A \mid B, E)$
0	0	0
0	1	1
1	0	1
1	1	1

After observing $A=1, E=1 \ldots$
$\ldots P(B \mid A=1)=1 / 2$
Back to $P(B)$.
$P(B \mid A=1, E=1) \propto P(A=1 \mid B, E=1)$
"Explaining away" or
"Causal discounting"

Explaining away

- Depends on the functional form (the parameterization) of the CPT
- OR or Noisy-OR: Discounting
- AND: No Discounting
- Logistic: Discounting or Augmenting

Spreading activation or recurrent neural networks

- Excitatory links: Rain \longleftrightarrow Wet, Sprinkler \longleftrightarrow Wet
- Observing rain, Wet becomes more active.
- Observing grass wet, Rain and Sprinkler become more active.
- Observing grass wet and sprinkler, Rain cannot become less active. No explaining away!

Spreading activation or recurrent neural networks

- Excitatory links: Rain \leftrightarrow Wet, Sprinkler \leftrightarrow Wet
- Inhibitory link: Rain ••••Sprinkler
- Observing grass wet, Rain and Sprinkler become more active.
- Observing grass wet and sprinkler, Rain becomes less active: explaining away.

Spreading activation or recurrent neural networks

- Each new variable requires more inhibitory connections.
- Interactions between variables are not causal.
- Not modular.
- Whether a connection exists depends on what other connections exist, in non-transparent ways.
- Combinatorial explosion.

Summary

Bayes nets, or directed graphical models, offer a powerful representation for large probability distributions:

- Ensure tractable storage, inference, and learning
- Capture causal structure in the world and canonical patterns of causal reasoning.
- This combination is not a coincidence.

