Computational modeling of cognitive development

Guest Lecture Julian Jara-Ettinger Infant & Childhood Cognition Fall, 2012

© Wikipedia. Benutzer: Flyout CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

© Wikipedia. Benutzer: Flyout CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 3

Bottom-Up

Top-Down

Alarm Clock Wax, Nails, etc. Burning wax

Alarm Clock Springs, Gears, etc. Spring oscillations

© Wikipedia. Sun Ladder. CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Alarm Clock Capacitors, Transistors, etc. d. This Be. For Charging capacitors

© Wikipedia. Sakurambo. CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

But no one designed the brain!

© Wikipedia. CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

But no one designed the brain!

© Wikipedia. CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

The brain evolved to do certain

computations

The Computational Level of Analysis

Understand the logic of the computations, not the specific algorithm or implementation.

Bayesian Models of Cognition

The Assumptions

Beliefs can be represented as a real number between 0 and 1.

Image: USDA. Public Domain.

Image: Arlo MagicMan. Flickr. CC BY-NC

Figure removed due to copyright restrictions. Téglás, Ernő, Edward Vul, et al. "Pure Reasoning in 12-Month-Old Infants as Probabilistic Inference." *Science* 332, no. 6033 (2011): 1054-9.

Bayes rule

$P(H \mid D) \propto P(D \mid H)P(H)$

Bayes rule $P(H | D) \propto P(D | H)P(H)$

Your belief that a hypothesis is true given the data

Bayes rule

$P(H \mid D) \propto P(D \mid H) P(H)$

Your belief that a hypothesis is true given the data is proportional

Bayes rule

$P(H \mid D) \propto P(D \mid H) P(H)$

Your belief that a hypothesis is true given the data is proportional to your prior belief in the hypothesis

Bayes rule $P(H | D) \propto P(D | H)P(H)$

Your belief that a hypothesis is true given the data is proportional to your prior belief in the hypothesis times the likelihood of the hypothesis producing the data.

Dier?

Animal Mammal Giraffe

Dier?

Animal 1/3 Mammal 1/3 Giraffe 1/3 P(H)

Animal1/3Mammal1/3Giraffe1/3

P(H)

P(H)

Animal1/3Mammal1/3Giraffe1/3

P(H) P(D|H)

Dier!

Animal1/3Mammal1/3Giraffe1/3

Animal (1/3)*(1/4) Mammal 1/3 1/3 Giraffe P(H) P(D|H)

Animal (1/3)*(1/4) Mammal (1/3)*(1/3) Giraffe 1/3 P(H) P(D|H)

Animal $(1/3)^{*}(1/4)$ Mammal $(1/3)^{*}(1/3)$ Giraffe $(1/3)^{*}(1/1)$ P(H) P(D|H)

P(H|D)

Animal (3/19) Mammal (4/19) Giraffe (12/19)

Animal (3/19) Mammal (4/19) Giraffe (12/19)

P(H)

Animal (3/19) Mammal (4/19) Giraffe (12/19) P(H) P(D|H)

Animal (3/19) * (1/3) Mammal (4/19) **Giraffe** (12/19) **P(H)** P(D|H)

Animal (3/19) * (1/3) Mammal (4/19) * (1/2) **Giraffe** (12/19) **P(H)** P(D|H)

Dier!

Animal (3/19) * (1/3)Mammal (4/19) * (1/2)Giraffe (12/19) * (0)P(H) P(D|H)

P(H|D)

Dier!

Animal (1/3) Mammal (2/3) Giraffe (0)

P(H)

Dier!

Animal (1/3) Mammal (2/3) Giraffe (0)

P(H)

P(D|H)

Dier!

Animal (1/3) Mammal (2/3) Giraffe (0)

Images: Wikipedia. Public Domain.

38

Dier!

Animal (1/3) * (1/2) Mammal (2/3) Giraffe $(\mathbf{0})$ **P(H)** P(D|H)

Images: Wikipedia. Public Domain.

39

Animal (1/3) * (1/2) Mammal (2/3) * (0) Giraffe $(\mathbf{0})$ **P(H)** P(D|H)

P(H|D)

Dier!

Animal (1)Mammal (0)Giraffe (0)

Does this actually look like what our minds do?

- Theory of Mind (Baker et al. 2007, 2009, 2011)
- Intuitive Physics (Battaglia et al. 2011, 2012)
- Object Recognition (Yullie et al. 2006)
- **Pragmatic Inference** (Bergen et al. 2012)
- Everyday Cognition (Griffiths et al. 2006)

The most difficult problems

- Objects
- Space
- Time
- Causality
- Number
- Minds
- Morality

The most difficult problems

CAN'T

Image: John Ryan. Flickr. CC BY-NC-SA.

CAN

Image: Zsolt Botykai. Flickr. CC BY-NC-SA.

Computational Modeling and the Theory Theory Generative theories as hypothesis

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Ullman et al. (2010)

Computational Modeling and the Theory Theory

- Search the space of all possible theories and use bayesian inference to find the theories that best explain the data.
- 2. Give the model the same data that a baby/infant/toddler observes.
- Use the best theory to generate new predictions, going beyond the observed data (the problem of induction).

Does it work?

- We'd like to have computational models of cognitive development and show that infants and children's learning matched the prediction of the models.
- You have already read through a couple of them...
 - Pure reasoning in 12-month-old infants as probabilistic inference (*Teglas et al. 2011*).
 - Infants consider both the sample and the sampling process in inductive generalization (*Gweon et al. 2010*).

Source: Gweon, H., Tenenbaum, J. B., et al. "Infants Consider Both the Sample and the Sampling Process in Inductive Generalization." *Proceedings of the National Academy of Sciences* 107, no. 20 (2010): 9066-9071.

National Academy of Sciences 107, no. 20 (2010): 9066-9071.

Source: Gweon, H., Tenenbaum, J. B., et al. "Infants Consider Both the Sample and the Sampling Process in Inductive Generalization." *Proceedings of the National Academy of Sciences* 107, no. 20 (2010): 9066-9071.

Conclusion

- At a computational level of analysis, we can ask what problems the mind is solving and what an optimal solution might look like.
- We can make specific models of how particular theories might interact with particular patterns of data to affect the kind of learning that occurs.
- We can then investigate the prior beliefs that infants and children have and see if, given those theories, they respond to the data as predicted by the model.
- This can help constrain our search for the algorithms and mechanisms that could implement these computations.

MIT OpenCourseWare http://ocw.mit.edu

9.85 Infant and Early Childhood Cognition Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.