9.913 Pattern Recognition for Vision

Class XIII, Motion and Gesture Yuri Ivanov

- Movement - Activity - Action
- View-based representation
- Sequence comparison
- Hidden Markov Models
- Hierarchical representations

From Tracking to Classification

How do we describe that?
How do we classify that?
Figure by MIT OCW.

From Tracking to Classification

Figure by MIT OCW.
How do we describe that?
How do we classify that?

- We might want to ask:
- Is <it> doing something meaningful?
- What exactly?
- How does it do it?
- How fast - e.g. conducting
- How accurately - e.g. dance instruction
- What style?
- That leads us to a sequence analysis

Motion Taxonomy

- Movement
- Primitive motion
- Self-evidential, is "what it looks like"
- Activity
- Requires explicit sequence model

Images removed due to copyright considerations. Please see: Bobick, A.
"Movement, Activity, and Action: The Role of Knowledge in Perception of Motion." Phyl Trans of Royal Statistical Society 352 (1997).

- Action
- Requires contextual information
- Requires relational information
- And many other things...

Basic Problem

Motion Energy Image

First idea -implicit representation of time

Sum the differences over the last τ frames:

$$
E_{\tau}(x, y, t)=\bigcup_{i=0}^{\tau-1} D(x, y, t-i)
$$

- WHERE motion happened

Photographs and figures from: Bobick, A., and J. Davis. "The Representation and Recognition of Action Using Temporal Templates." IEEE Transactions on Pattern Analysis and Machine Intelligence 23, no. 3 (2002). Courtesy of IEEE, A. Bobick, and J. Davis. Copyright 2002 IEEE. Used with Permission.

Motion History Image

Step two: include temporal information

$$
H_{\tau}(x, y, t)= \begin{cases}\tau & \text { if } D(x, y, t)=1 \\ \max \left(0, H_{\tau}(x, y, t-1)-1\right) & \text { otherwise }\end{cases}
$$

- HOW motion happened

Aside - you can compute a similar measure recursively:

$$
H_{\tau}(x, y, t)=H_{\tau}(x, y, t-1)+\alpha\left(D(x, y, t)-H_{\tau}(x, y, t-1)\right)
$$

Photographs and figures from: Bobick, A., and J. Davis. "The Representation and Recognition of Action Using Temporal Templates." IEEE Transactions on Pattern Analysis and Machine Intelligence 23, no. 3 (2002). Courtesy of IEEE, A. Bobick, and J. Davis. Copyright 2002 IEEE. Used with Permission.

Illustration

OpenCV - Intel Open source Computer Vision Library

Classification

Feature vector:
$x=[7 \mathrm{Hu}$ moments for MEI +7 Hu moments for MHI]

RTS invariant shape descriptors (see the end of notes)

With the usual Gaussian assumption on distribution of x :

$$
\mu_{\omega}=E\left[x_{\omega}\right] ; \quad \Sigma_{\omega}=E\left[\left(x_{\omega}-\mu_{\omega}\right)^{2}\right]
$$

Then the class, ω :

$$
\omega=\operatorname{argmin}\left[\left(x-\mu_{\omega}\right)^{T} \Sigma_{\omega}^{-1}\left(x-\mu_{\omega}\right)\right]
$$

Multi-View Recognition

The model is replicated for a discrete number of views:

$$
\begin{aligned}
& \text { For } \theta=\left\{0^{\circ} \ldots 90^{\circ}\right\} \\
& V\left(\omega_{i}\right)=\min _{\theta}\left[\left(x-\mu_{\omega_{i}}^{\theta}\right)^{T} \sum_{\omega_{i}}^{-1, \theta}\left(x-\mu_{\omega_{i}}^{\theta}\right)\right] \text { Closest member of each class } \\
& \boldsymbol{\omega}=\operatorname{argmin}\left[V\left(\omega_{i}\right)\right] \quad \text { Nearest class }
\end{aligned}
$$

Photographs and figures from: Bobick, A., and J. Davis. "The Representation and Recognition of Action Using Temporal
Templates." IEEE Transactions on Pattern Analysis and Machine Intelligence 23, no. 3 (2002). Courtesy of IEEE,
A. Bobick, and J. Davis. Copyright 2002 IEEE. Used with Permission.

Example Application

KidsRoom

- Interactive story
- Autonomous system
- Narration is controlled
- Input from cameras and mike
- Visual events:

Image removed due to copyright considerations. See:

- position
- motion energy
- motion direction
- gross body motion

Motion Energy

Movement Classification

"Flap"

Last game sequence

Temporal Alignment

Another idea - temporal alignment

If sequences are aligned to a common time axis, then we can treat them as vectors

Temporal Alignment

Find re-indexing sequences i_{x} and i_{y} that align X and Y to a common time axis k while minimizing dissimilarity.

One solution - Dynamic Time Warp algorithm

$$
E=\frac{1}{M_{\phi}} \sum_{n=1}^{T}\left\{m(n)\left(s_{x}\left[i_{x}(n)\right]-s_{y}\left[i_{y}(n)\right]\right)^{2}\right\}
$$

Global normalization Local weighting

Example: Utterance Classification

Example: Utterance Classification

Alternative - pair-wise alignment:

$$
\text { SVM: } f(x)=\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b
$$

1. Compute the symmetric DTW between all pairs

$$
d_{i j}=\frac{D\left(s_{i}, s_{j}\right)+D\left(s_{j}, s_{i}\right)}{2}
$$

2. Compute an RBF Kernel

$$
K\left(s_{i}, s_{j}\right)=\exp \left(-\gamma d_{i j}\right)
$$

Danger: K might not be a proper kernel matrix - need to regularize

Example: Utterance Classification

Japanese Vowel Set (UCI Machine Learning Repository):

- Speaker identification task
- 9 speakers
- saying the same Japanese vowel
- features 12 cepstral coefficients
- each utterance - 7-30 samples
- 340 training examples
- 240 testing examples

	Accuracy
KNN	94.60%
MCC	94.10%
HMM	96.20%
SVM	98.20%
DynSVM	98.20%

Hidden Markov Model (HM\&M)

Yet another idea:

Hidden Markov Model (HM\&M)

HMMs

Another view - "Graphical Model":

Figure by MIT OCW.

Components of an HMM

$$
\lambda=\{\pi, A, B\}
$$

1) π - probability of starting from a particular state

$$
\begin{aligned}
& \pi_{i}=p\left(q_{l}=i\right) \\
& \sum_{i=1}^{N} \pi_{i}=1
\end{aligned}
$$

2) A - probability of moving to a state, given the history

$$
\begin{aligned}
& a_{i j}=p\left(q_{t}=i \mid q_{t-1}=j\right)-\text { Markov assumption } \\
& \sum_{j=1}^{N} a_{i j}=1
\end{aligned}
$$

3) B - probability of outputing a particular observation from a given state:

$$
\begin{aligned}
& b_{i}(o)=p\left(o_{t} \mid q_{t}=i\right) \\
& \int b_{i}(x) d x=1
\end{aligned}
$$

HMM in Pictures

HMM Example

Three Tasks of HMM

1. Given a sequence of observations find a probability of it given the model, $p(O \mid \lambda)$
2. Given a sequence of observations recover a sequence of states, $P(q \mid O, \lambda)$
3. Given a sequence, estimate parameters of the model

Problem I - Probability Calculation

Take I - brute force:

Given: $\quad \mathbf{O}=\left(o_{1}, \ldots, o_{T}\right)$
 Calculate: $P(\mathbf{O} \mid \lambda)$

Marginalize:

$$
\begin{aligned}
P(\mathbf{O} \mid \lambda) & =\sum_{\forall \mathbf{q}} P(\mathbf{O}, \mathbf{q} \mid \lambda)=\sum_{\forall \mathbf{q}} P(\mathbf{O} \mid \mathbf{q}, \lambda) P(\mathbf{q} \mid \lambda) \\
P(\mathbf{O} \mid \mathbf{q}, \lambda) & =b_{q_{1}}\left(o_{1}\right) b_{q_{2}}\left(o_{2}\right) \ldots b_{q_{T}}\left(o_{3}\right) \quad P(\mathbf{q} \mid \lambda)=\pi_{q_{1}} a_{q_{1} q_{2}} a_{q_{2} q_{3}} \ldots a_{q_{T-1} q_{T}}
\end{aligned}
$$

$$
P(\mathbf{O} \mid \mathbf{q}, \lambda) P(\mathbf{q} \mid \lambda)=\pi_{q_{1}} b_{q_{1}}\left(o_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(o_{2}\right) a_{q_{2} q_{3}} b_{q_{3}}\left(o_{3}\right) \ldots a_{q_{T-1} q_{T}} b_{q_{T}}\left(o_{T}\right)
$$

$$
N \text { states, } T \text { transitions }=>|\mathbf{q}|=\mathrm{N}^{\mathrm{T}}
$$

$$
\mathrm{N}=5, \mathrm{~T}=100 \Rightarrow 2 T N^{T}=2 * 100 * 5^{100} \sim 10^{72} \text { computations }
$$

$$
65536 * 10^{72} \text { particles in the universe }
$$

Try Again

$$
\begin{aligned}
& P(\mathbf{O} \mid \lambda)=\sum_{\forall \mathbf{q}} P(\mathbf{O}, \mathbf{q} \mid \lambda) \\
& =\sum_{\mathbf{q}=\mathbf{q}_{1}}^{\mathbf{q}_{10^{22}}} \pi_{q(1)} b_{q(1)}\left(o_{1}\right) a_{q(1) q(2)} b_{q(2)}\left(o_{2}\right) a_{q(2) q(3)} b_{q(3)}\left(o_{3}\right) \ldots a_{q(T-1) q(T)} b_{q(T)}\left(o_{T}\right) \\
& =\sum_{m} \sum_{l} \cdots \sum_{j} \sum_{i} \pi_{i} b_{i}\left(o_{1}\right) a_{i j} b_{j}\left(o_{2}\right) a_{j k} b_{k}\left(o_{3}\right) \ldots a_{l m} b_{m}\left(o_{T}\right) \\
& \approx 2 T N^{T}
\end{aligned}
$$

Problem I - Probability Calculation

Take II - forward procedure:
Define a "forward variable", α

$$
\alpha_{t}(i)=P\left(o_{1} o_{2} \ldots o_{t}, q_{t}=i \mid \lambda\right) \quad \text { - probability of seeing the string up to } t
$$ and ending up in state i

1. Initialize

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right)
$$

2. Induce

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(o_{t+1}\right)
$$

Define a "backward variable", β

$\beta_{t}(i)=P\left(o_{t+1} o_{t+2} \cdots o_{T} \mid q_{t}=i, \lambda\right) \quad$ - probability of seeing the rest of the string after t and after visiting state i at t

1. Initialize

$$
\beta_{T}(i)=1
$$

2. Induce

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)
$$

3. Terminate

Task II - Optimal State Sequence

"Optimality" - maximum probability of being in a state i at time t.

$$
\text { Given: } \quad \mathbf{O}=\left(o_{1}, \ldots, o_{T}\right)
$$

Find: $\quad q_{t}=\operatorname{argmax} P\left(q_{t} \mid \mathbf{O}, \lambda\right)$
q
by Bayes rule

$$
P\left(q_{t}=i \mid \mathbf{O}\right)=\frac{P\left(\mathbf{O}, q_{t}=i\right)}{\sum_{i=1}^{N} P\left(\mathbf{O}, q_{t}=i\right)}
$$

$P\left(\mathbf{O}, q_{t}\right)=P\left(o_{1} \ldots o_{t}, o_{t+1} \ldots o_{T}, q_{t}\right)=P\left(o_{1} \ldots o_{t}, q_{t}\right) P\left(o_{t+1} \ldots o_{T} \mid o_{1} \ldots o_{t}, q_{t}\right)$

$$
=P\left(o_{1} \ldots o_{t}, q_{t}\right) P\left(o_{t+1} \ldots o_{T} \mid q_{t}\right)=\alpha_{t} \beta_{t}
$$

State Posterior

So,

$$
P\left(q_{t}=i \mid \mathbf{O}\right)=\frac{P\left(\mathbf{O}, q_{t}=i\right)}{\sum_{j=1}^{N} P\left(\mathbf{O}, q_{t}=j\right)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}=\gamma_{t}(i)
$$

1. Forward pass - compute α matrix

$$
\begin{aligned}
\approx & N^{2} T \\
\approx & N^{2} T \\
& N T \\
\approx & N^{2} T
\end{aligned}
$$

2. Backward pass - compute β matrix
3. Multiply element-by element
4. Normalize columns

What's the problem?
Inconsistent paths - some might not even be allowed

But not entirely useless! We will need it later.

"Optimality" - single maximum probability path.

$$
\begin{array}{ll}
\text { Given: } & \mathbf{O}=\left(o_{1}, \ldots, o_{T}\right) \\
\text { Find: } & \underset{\mathbf{q}}{\operatorname{argmax}} P(\mathbf{q} \mid \mathbf{O}, \lambda)
\end{array}
$$

Define: $\quad \delta_{t}(i)=\max _{q_{1} q_{2} \ldots q_{t-1}} P\left(q_{1} \ldots q_{t-1}, q_{t}=i, o_{1} \ldots o_{t}\right)$ Max prob. path so far
By the optimality principle (Bellman, '57):

$$
\delta_{t+1}(j)=\left[\max _{i} \delta_{t}(i) a_{i j}\right] b_{j}\left(o_{t+1}\right)
$$

Just need to keep track of max probability states along the way

Task II - Viterbi Algorithm (cont.)

1. Initialize

$$
\begin{aligned}
& \delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right) \quad 1 \leq i \leq N \\
& \psi_{1}(i)=0 \quad \text { Housekeeping variable }
\end{aligned}
$$

2. Recurse

$$
\begin{array}{ll}
\delta_{t}(j)=\max _{1 \leq i \leq N}\left[\delta_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) & 2 \leq t \leq T \\
& 1 \leq j \leq N \\
\psi_{t}(j)=\underset{1 \leq i \leq N}{\operatorname{argmax}}\left[\delta_{t-1}(i) a_{i j}\right] & 2 \leq t \leq T \\
& 1 \leq j \leq N
\end{array}
$$

3. Terminate

$$
\begin{aligned}
P^{*} & =\max _{1 \leq i \leq N} \delta_{T}(i) \\
q_{T}^{*} & =\underset{\sim}{\operatorname{argmax}} \delta_{T}(i)
\end{aligned}
$$

4. Backtrack

$$
q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right) \quad t=(T-1), \ldots, 1
$$

- Similar to the forward procedure
- Typically, you'll do it in log space for speed and underflows:
- replace all parameters with their logarithms
- replace all multiplications with additions

Task III - Parameter Estimation

Baum-Welch algorithm (EM for HMMs)

$$
\begin{array}{ll}
\text { Given: } & \mathbf{O}=\left(o_{1}, \ldots, o_{T}\right) \\
\text { Find: } & \pi, A, B
\end{array}
$$

First, introduce another greek letter:

$$
\xi_{t}(i, j)=P\left(q_{t}=i, q_{t+1}=j \mid \mathbf{O}\right)=\frac{P\left(q_{t}=i, q_{t+1}=j, \mathbf{O}\right)}{P(\mathbf{O})}
$$

$$
=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t}(j)}{P(\mathbf{O})}
$$

Transition Probability

This leads to:

$$
\bar{a}_{i j}=\frac{E[\#(i \rightarrow j)]}{E[\#(i \rightarrow .)]}=\frac{\sum_{i=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}
$$

The rest is easy

Priors and Outputs

Prior distribution:

$$
\bar{\pi}_{i}=E[\#(i, t=1)]=\gamma_{1}(i)
$$

Output distribution (discrete):

$$
\bar{b}_{i}(k)=\frac{E\left[\#\left(i, v_{k}\right)\right]}{E[\#(i)]}=\frac{\sum_{t=1}^{\substack{o_{t}=v_{k}}} \gamma_{t}(i)-\begin{array}{l}
\text { Sum probabilities of } \\
\text { being in state } i \text { while } \\
\text { seeing symbol } v_{k}
\end{array}}{\sum_{t=1}^{T} \gamma_{t}(i)} \quad \begin{aligned}
& \text { Normalize }
\end{aligned}
$$

Figure by MIT OCW.

Continuous Output Case

Output distribution (continuous, Gaussian):

$$
\begin{aligned}
& \bar{b}_{i}(o)=N\left(\mu_{i}, \Sigma_{i}\right) \\
& \bar{\mu}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \cdot o_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)} \begin{array}{l}
\text { Observation at time } t \text { weighted } \\
\text { by the probability of being in the } \\
\text { state at that time }
\end{array} \\
& \bar{\Sigma}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \cdot\left(o_{t}-\mu_{i}\right)\left(o_{t}-\mu_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{aligned}
$$

Input

Initial state

Output distributions

Transition matrix

How HMM sees it

Gesture Recognition -Trajectory Model

Modeling a tracked hand trajectory.

HMM Classifier

Nothing unusual:

Bank of HMMs

Applications - American Sign Language

Task: Recognition of sentences of American Sign Language

40 word lexicon:

- Single camera
- No special markings on hands
- Real-time

part of speech	vocabulary pronoun verb l, you, he, we, you(pl), they
noun	want, like, lose, dontwant, dontlike, love, pack, hit, loan
box, car, book, table, paper, pants, bicycle, bottle, can, wristwatch, umbrella, coat, pencil, shoes, food, magazine, fish, mouse, pill, bowl	
adjective	red, brown, black, gray, yellow

Table from: Starner, T., and et. al. "Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video." IEEE Transactions on Pattern Analysis and Machine Intelligence (1998). Courtesy of IEEE. Copyright 1998 IEEE. Used with Permission.

ASL - Features and Model

"Word" model - a 4-state L-R HMM with a single skip transition:

Features
(from skin model):

$$
o=\left[\left(x, y, d x, d y, \operatorname{area}, \theta, \lambda_{\max }, \lambda_{\max } / \lambda_{\min }\right)_{r g k t},(\ldots)_{l f f}\right]^{T}
$$

System 1: Second person

System 2: First person

Photo marked with black box due to copyright consideration.
Nose could be used for initializing the skin model

ASL - In Action

Courtesy of Thad Starner. Used with permission.

Applications - American Sign Language

500 sentences (400 training, 100 testing)

System 1:

experiment	training set	test set	\% words recognizedcorrectly
all features	94.10\%	91.90\%	
relative features	89.60\%	87.20\%	Word accuracy,$D+S+I$
all features \&	81.0\% (87\%)	74.5\% (83\%)	
unrestricted	($\mathrm{D}=31, \mathrm{~S}=287$,	($\mathrm{D}=3, \mathrm{~S}=76$,	
grammar	$\mathrm{I}=137, \mathrm{~N}=2390$)	$\mathrm{I}=41, \mathrm{~N}=470$)	

System 2:

grammar	training set	test set
part-of-speech	99.30%	97.80%
5-word sentence	$98.2 \%(98.4 \%)$	
	$(\mathrm{D}=5, \mathrm{~S}=36$,	
	$\mathrm{I}=5 \mathrm{~N}=2500)$	97.80%
unrestricted	$96.4 \%(97.8 \%)$	$96.8 \%(98.0 \%)$
	$(\mathrm{D}=24, \mathrm{~S}=32$,	$(\mathrm{D}=4, \mathrm{~S}=6, \mathrm{I}=6$,
	$\mathrm{I}=35, \mathrm{~N}=2500)$	$\mathrm{N}=500)$

Beyond HMM

Where can we go if HMM is not sufficient?

Ideas:

- Hierarchical HMM
- More complex models - SCFG

Explicit representation of structure

Capable of generating only a regular language

More expressive, may include memory, but harder to deal with

Figures from: Ivanov, Y., and A. Bobick. "Recognition of Visual Activities and Interactions." IEEE Transactions of Pattern Analysis and Machine Intelligence (2000). Courtesy of IEEE. Copyright 2000 IEEE. Used with Permission.

Structured Gesture

a)

Problem:
2 directions $=2$ models WHY???

Solution - split the model in two:

- Components (trajectories)
- Structure (events)

Heterogeneous Representation

- Many high-level activities are sequences of primitives
- Pitching, cooking, dancing, stealing a car from a parking lot
- Components
- Signal level model
- Variability in performance
- Hidden state representation (HMM, etc.)
- Structure
- Event-level model
- Uncertainty in component detections
- State is NOT hidden (SRG, SCFG, etc)
- Right tool for the right task!

Two-tier Recognition Architecture

Application: Conducting Music

Application: Conducting Music

Jean Sibelius, Second Symphony, Opus 43, D Major

Grammar:

$G_{c}:$			
PIECE	\rightarrow	BAR PIECE	$[0.5]$
		BAR	$[0.5]$
BAR	\rightarrow	TWO	$[0.5]$
		THREE	$[0.5]$
THREE	\rightarrow	down3 right3 up3	$[1.0]$
TWO	\rightarrow	down2 up2	$[1.0]$

	Correct
Individual	$\sim 70 \%$
Component	$\sim 85 \%$
Bar	$\sim 95 \%$

Component Detection

Temporal Consistency

Grammar:

$$
A \rightarrow a b \mid a b A
$$

Input

Temporal Consistency

Grammar:

$A \rightarrow a b \mid a b A$

Input \qquad

Figures from: Ivanov, Y., and A. Bobick. "Recognition of Visual Activities and Interactions." IEEE Transactions of Pattern Analysis and Machine Intelligence (2000). Courtesy of IEEE. Copyright 2000 IEEE. Used with Permission.

Temporal Consistency

Grammar:

$A \rightarrow a b \mid a b A$
Input

Terminals have temporal extent!

Figures from: Ivanov, Y., and A. Bobick. "Recognition of Visual Activities and Interactions." IEEE Transactions of Pattern Analysis and Machine Intelligence (2000). Courtesy of IEEE. Copyright 2000 IEEE. Used with Permission.

Temporal Consistency

Grammar:

$A \rightarrow a b \mid a b A$
Input

Inconsistent parse

Consistent parse

\qquad

Figures from: Ivanov, Y., and A. Bobick. "Recognition of Visual Activities and Interactions." IEEE Transactions of Pattern Analysis and Machine Intelligence (2000). Courtesy of IEEE. Copyright 2000 IEEE. Used with Permission.

Parsing

The idea is that the top level parse will filter out mistakes in low level detections

Detection adecb

Stochastic Context-Free Grammar

Example Grammar:

Event Parsing

For the production X, events a, b and c should be consistent

Application: Musical Conducting

Courtesy of Teresa Marrin-Nakra. Used with permission.

```
Segmentation:
BAR:
    2/4 start/end sample: [0 66]
    Conducted as two quarter beat pattern.
BAR:
    2/4 start/end sample: [66 131]
    Conducted as two quarter beat pattern.
BAR:
    3/4 start/end sample: [131 194]
    Conducted as three quarter beat pattern.
BAR:
    2/4 start/end sample: [194 246]
    Conducted as two quarter beat pattern.
Viterbi probability = 0.00423416
```

	Correct
Individual	$\sim 70 \%$
Component	$\sim 85 \%$
Bar	$\sim 95 \%$

From Tracking to Classification

How do we describe that?
How do we classify that?
Figure by MIT OCW.

- Outdoor environment - occlusions and lighting changes
- Static cameras
- Real-time performance
- Labeling activities and person-vehicle interactions in a parking lot
- Handling simultaneous events

Monitoring System

Photos and figures from: Stauffer, Chris, and Eric Grimson, "Learning Patterns of Activity Using Real-Time Tracking." IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI 22, no. 8 (2000): 747-757. Courtesy of IEEE, Chris Stauffer, and Eric Grimson.
Copyright 2000 IEEE. Used with Permission.

- Tracker (Stauffer, Grimson)
- assigns identity to the moving objects
- collects the trajectory data into partial tracks
- Event Generator
- maps partial tracks onto a set of events
- Parser
- labels sequences of events according to a grammar
- enforces spatial and temporal constraints

Tracker

- Adaptive to slow lighting changes:
- Each pixel is modeled by a mixture

$$
P\left(X_{t}\right)=\sum_{i=1}^{K} w_{i, t} * \eta\left(X_{t}, \mu_{i, t}, \Sigma_{i, t}\right)
$$

- Foreground regions are found by connected components algorithm
- Object dynamics is modeled in 2D by a set of Kalman filters
- Details - (Stauffer, Grimson CVPR 99)

Tracker

Camera view

An object

Photos and figures from: Stauffer, Chris, and Eric Grimson, "Learning Patterns of Activity Using Real-Time Tracking." IEEE Transactions on PatternRecognition and Machine Intelligence (TPAMI) 22, no. 8 (2000): 747-757. Courtesy of IEEE, Chris Stauffer, and Eric Grimson. Copyright 2000 IEEE. Used with Permission.

Event Generator

Photos and figures from: Stauffer, Chris, and Eric Grimson, "Learning Patterns of Activity Using Real-Time Tracking." IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI) 22, no. 8 (2000): 747-757. Courtesy of IEEE, Chris Stauffer, and Eric Grimson. Copyright 2000 IEEE. Used with permission.
Map tracks onto events: car-enter, person-enter, car-found, person-found, car-lost, person-lost, stopped

- Events along with class likelihoods are posted at the endpoints of each track (car-appear [0.5], car-disappear [1.0])
- Action label is assigned to each event in accordance with the environment map (car-enter [0.5], car-exit [1.0])
- Each event is complemented if the label probability is < 1
(car-enter [0.5], person-enter [0.5], car-exit [1.0])

Parking Lot Grammar (Partial)

G_{p} :				
TRACK	\rightarrow		CAR-TRACK	[0.5]
		I	PERSON-TRACK	[0.5]
CAR-TRACK	\rightarrow		CAR-THROUGH	[0.25]
		I	CAR-PICKUP	[0.25]
		I	CAR-0UT	[0.25]
		I	CAR-DROP	[0.25]
CAR-PICKUP	\rightarrow		ENTER-CAR-B CAR-STOP PERSON-LOST B-CAR-EXIT	[1.0]
ENTER-CAR-B	\rightarrow		CAR-ENTER	[0.5]
		1	CAR-ENTER CAR-HIDDEN	[0.5]
CAR-HIDDEN	\rightarrow		CAR-LOST CAR-FOUND	[0.5]
		1	CAR-LOST CAR-FOUND CAR-HIDDEN	[0.5]
B-CAR-EXIT	\rightarrow		CAR-EXIT	[0.5]
		1	CAR-HIDDEN CAR-EXIT	[0.5]
CAR-EXIT	\rightarrow		car-exit	[0.7]
		1	SKIP car-exit	[0.3]
CAR-LOST	\rightarrow		car-lost	[0.7]
		1	SKIP car-lost	[0.3]
CAR-STOP	\rightarrow		car-stop	[0.7]
		1	SKIP car-stop	[0.3]
PERSON-LOST	\rightarrow		person-lost	[0.7]
		1	SKIP person-lost	[0.3]

Photos and figures from: Stauffer, Chris, and Eric Grimson, "Learning Patterns of Activity Using Real-Time Tracking." IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI) 22, no. 8 (2000): 747-757. Courtesy of IEEE, Chris Stauffer, and Eric Grimson. Copyright 2000 IEEE. Used with Permission.

Consistency

- Temporal
- Events should happen in particular order
- Temporally close events are more likely to be related
- Tracks overlapping in time are definitely not related to the same object
- Spatial
- Spatially close events are more likely to be related
- Other
- Objects don't change identity within a track

Spatio-Temporal Consistency

$$
\mathbf{r}=(x, y), \quad d \mathbf{r}=(d x, d y)
$$

Predict new position:

$$
\mathbf{r}_{p}=\mathbf{r}_{1}+d \mathbf{r}_{1}\left(t_{2}-t_{1}\right)
$$

Penalize:

$$
\begin{aligned}
& \text { Penalize: } f\left(\mathbf{r}_{p}, \mathbf{r}_{2}\right)=\left\{\begin{array}{l}
0, \quad \text { if }\left(t_{2}-t_{1}\right)<0 \\
\exp \left(\frac{\left(\mathbf{r}_{2}-\mathbf{r}_{p}\right)^{T}\left(\mathbf{r}_{2}-\mathbf{r}_{p}\right)}{\theta \square}\right)
\end{array}\right.
\end{aligned}
$$

Input Data

Event Generator

$\begin{aligned} & 11 \\ & \stackrel{1}{0} \\ & 0^{\prime} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Event	UID	Avg. Size	Class	P	x	y	t	frame	\square $\frac{\square}{2}$ $\frac{1}{2}$
	ENTER	724	0.122553	0	0.5	0.450094	0.938069	917907137.8	1906	
	ENTER	665	0.046437	1	0.5	0.6107	0.94674	917907122.5	1799	
	PERSON-LEAVE	665	0.045869	1	0.997846	0.648089	0.98855	917907142.7	1938	
	STOPPED	724		0	0.995784	0.348569	0.345513	917907146.5	1964	
	ENTER	780	0.034293	1	0.5	0.74188	0.980292	917907151.3	1998	
	ENTER	790	0.069093	0	0.5	0.814565	0.032611	917907153.4	2012	
	FOUND	787	0.033573	1	0.5	0.297585	0.357887	917907153.1	2010	
	CAR-LEAVE	790	0.061263	0	0.997285	0.975971	0.211984	917907155.3	2025	
	PERSON-LEAVE	780	0.038616	1	0.999923	0.974494	0.865237	917907158.6	2047	
	PERSON-LEAVE	787	0.032045	1	0.999997	0.296519	0.183704	917907158.7	2048	
	ENTER	813	0.034776	1	0.5	0.012821	0.348379	917907160.9	2063	
	ENTER	816	0.093513	0	0.5	0.960425	0.793899	917907161.9	2070	
	CAR-LEAVE	724	0.097374	0	0.993211	0.972272	0.693728	917907165.2	2091	
	CAR-LEAVE	816	0.089424	0	0.99023	0.693699	0.990798	917907165.2	2091	

Interleaved events in the input stream

Figures from Ivanov, Yuri, Chris Stauffer, Aaron Bobick, W. E. L. Grimson. "Video Surveillance of Interactions." IEEE Workshop on Visual Surveillance (ICCV 2001) (1999). Courtesy of IEEE, Yuri Ivanov, Chris Stauffer, Aaron Bobick, and W. E. L. Grimson. Copyright 1999 IEEE. Used with Permission.

Parse 1: Person-Pass-Through

Action label
Component labels
Object track

Figures from Ivanov, Yuri, Chris Stauffer, Aaron Bobick, W. E. L. Grimson. "Video Surveillance of Interactions." IEEE Workshop on Visual Surveillance (ICCV 2001) (1999). Courtesy of IEEE, Yuri Ivanov, Chris Stauffer, Aaron Bobick, and W. E. L. Grimson. Copyright 1999 IEEE. Used with Permission.

Parse 2: Drive-In

Action label

Component labels

Object tracks

Figures from Ivanov, Yuri, Chris Stauffer, Aaron Bobick, W. E. L. Grimson. "Video Surveillance of Interactions." IEEE Workshop on Visual Surveillance (ICCV 2001) (1999). Courtesy of IEEE, Yuri Ivanov, Chris Stauffer, Aaron Bobick, and W. E. L. Grimson.
Copyright 1999 IEEE. Used with Permission.

Parse 3: Drop-off

Action label
Component labels

Object track

Temporal extent

Figures from Ivanov, Yuri, Chris Stauffer, Aaron Bobick, W. E. L. Grimson. "Video Surveillance of Interactions." IEEE Workshop on Visual Surveillance (ICCV 2001) (1999). Courtesy of IEEE, Yuri Ivanov, Chris Stauffer, Aaron Bobick, and W. E. L. Grimson. Copyright 1999 IEEE. Used with Permission.

Parse 4: Car-Pass-Through

Action label

Component labels

Object track

Temporal extent

Figures from Ivanov, Yuri, Chris Stauffer, Aaron Bobick, W. E. L. Grimson. "Video Surveillance of Interactions." IEEE Workshop on Visual Surveillance (ICCV 2001) (1999). Courtesy of IEEE, Yuri Ivanov, Chris Stauffer, Aaron Bobick, and W. E. L. Grimson. Copyright 1999 IEEE. Used with Permission.

- Real-time system
- First of a kind end-to end system
- Extended robust parsing algorithm
- Events are staged in real environment with other cars and people
- ~10-15 events per minute
- Staged events -100% detected
- Accidental events - $\sim 80 \%$ detected
- Outdoor environment - occlusions and lighting changes
- Static cameras
- Real-time performance
- Labeling activities and person-vehicle interactions in a parking lot
- Handling simultaneous events

Appendix: Hu Moments

Image Moments

The two-dimensional $(p+q)$ th order moments of a density distribution function $\rho(x, y)$ (e.g., image intensity) are defined in terms of Riemann integrals as:

$$
\begin{equation*}
m_{p q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{p} y^{\rho} \rho(x, y) d x d y \tag{1}
\end{equation*}
$$

for $p, q=0,1,2, \cdots$.
The central moments $\mu_{p q}$ are defined as:

$$
\begin{equation*}
\mu_{p q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\bar{x})^{p}(y-\bar{y})^{q} \rho(x, y) d(x-\bar{x}) d(y-\bar{y}) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{x}=m_{10} / m_{00}, \\
& \bar{y}=m_{01} / m_{01} .
\end{aligned}
$$

It is well-known that under the translation of coordinates, the central moments do not change, and are therefore invariants under translation. It is quite easy to express the central moments $\mu_{p q}$ in terms of the ordinary moments $m_{\rho q}$. For the first four orders, we have

$$
\begin{aligned}
& \mu_{00}=m_{00} \equiv \mu \\
& \mu_{10}=0 \\
& \mu_{01}=0 \\
& \mu_{20}=m_{20}-\mu \bar{x}^{2} \\
& \mu_{11}=m_{11}-\mu \bar{x} \bar{y} \\
& \mu_{02}=m_{02}-\mu \bar{y}^{2} \\
& \mu_{00}=m_{30}-3 m_{20} \bar{x}+2 \mu \bar{x}^{3} \\
& \mu_{21}=m_{21}-m_{20} \bar{y}-2 m_{11} \bar{x}+2 \mu \bar{x}^{2} \bar{y} \\
& \mu_{12}=m_{12}-m_{02} \bar{x}-2 m_{11} \bar{y}+2 \mu \bar{x} \bar{y}^{2} \\
& \mu_{03}=m_{03}-3 m_{02} \bar{y}+2 \mu \bar{y}^{3} .
\end{aligned}
$$

To achieve invariance with respect to orientation and scale, we first normalize for scale defining $\eta_{p q}$:

$$
\eta_{p q}=\frac{\mu_{p q}}{\left(\mu_{\infty}\right)^{\gamma}},
$$

where $\gamma=(p+q) / 2+1$ and $p+q \geq 2$. The first seven orientation invariant Hu moments are defined as:

$$
\begin{aligned}
\nu_{1}= & \eta_{20}+\eta_{02} \\
\nu_{2}= & \left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
\nu_{3}= & \left(\eta_{00}-3 \eta_{12}\right)^{2}+\left(3 \eta_{21}-\eta_{03}\right)^{2} \\
\nu_{4}= & \left(\eta_{00}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2} \\
\nu_{5}= & \left(\eta_{00}-3 \eta_{12}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{00}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +\left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{21}+\eta_{03}\right) \\
& \cdot\left[3\left(\eta_{00}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
\nu_{6}= & \left(\eta_{00}-\eta_{02}\right)\left[\left(\eta_{00}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +4 \eta_{11}\left(\eta_{00}+\eta_{12}\right)\left(\eta_{21}+\eta_{03}\right) \\
\nu_{7}= & \left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{00}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& -\left(\eta_{00}-3 \eta_{12}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{50}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right]
\end{aligned}
$$

These moments can be used for pattern identification independent of position, size, and orientation.

Full appendix from: Bobick, A., and J. Davis. "The Representation and Recognition of Action Using Temporal Templates." IEEE Transactions on Pattern Analysis and Machine Intelligence 23, no. 3 (2002). Courtesy of IEEE. Copyright 2002 IEEE. Used with Permission.

