New Schedule

	Sep 16-Vision - Image formation and processing	Y
	Sep 23 - Vision - Feature extraction I	B
	Sep 30-PR/Vis - Feature Extraction II/Bayesian decisions	$B \& Y$
	Oct 7 - PR-Density estimation	Y papers
	Oct 14-PR-Clasification	B
Dec. 8	Oct 21-Biological Object Recognition	T
same	Oct 28-PR-Clustering	Y\&B proj
same	Nov 4 - Paper Discussion	All
same	Nov 11-App I-Object Detection/Recognition	B
Oct. 21	Nov 18 - App II - Morphable models	$T \& B$
	Nov 25 - No class - Thanksgiving day	
$\wedge 2$ weeks	Dec 2 - App III - Tracking	$C \& Y$
$\wedge 1$ week	Dec 9 - App IV - Gesture and Action Recognition	Y
$\wedge 1$ week	Dec 16-Project presentation	All

9.913 Pattern Recognition for Vision

Classification
Bernd Heisele

Overview

Introduction

Linear Discriminant Analysis
Support Vector Machines
Literature \& Homework

Introduction

- Linear, non-linear separation
- Two class, multi-class problems

Two approaches:

- Density estimation, classify with Bayes decision: Linear Discr. Analysis (LDA), Quadratic Discr. Analysis (QDA)
- Without density estimation: Support Vector Machines (SVM)

LDA Bayes Rule

Bayes Rule

$$
p(\mathbf{x}, \omega)=p(\mathbf{x} \mid \omega) P(\omega)=P(\omega \mid \mathbf{x}) p(\mathbf{x}) \Rightarrow
$$

\mathbf{x} : random vector
ω : class

LDA- Bayes Decision Rule

Decide ω_{1} if $\frac{P\left(\omega_{1} \mid \mathbf{x}\right)}{P\left(\omega_{2} \mid \mathbf{x}\right)}>1$; otherwise ω_{2}

Likelihood Ratio

$$
\frac{p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)}>1
$$

Log Likelihood Ratio

$$
\ln \left(\frac{p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)}\right)>0, \ln \left(\frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)}\right)+\ln \left(\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right)>0
$$

LDA-Two Classes, Identical Covariance

$$
\text { Gaussian: } p\left(\mathbf{x} \mid \omega_{i}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{i}\right|^{1 / 2}} e^{-\frac{1}{2}\left(\mathbf{x}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}-\mu_{i}\right)}
$$ assume identical covariance matrices $\Sigma_{1}=\Sigma_{2}$:

$$
\begin{aligned}
& \ln \left(\frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)}\right)+\ln \left(\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right) \\
& =\frac{1}{2}\left(\mathbf{x}-\mu_{2}\right)^{T} \mathbf{S}^{-1}\left(\mathbf{x}-\mu_{2}\right)-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \mathbf{S}^{-1}\left(\mathbf{x}-\mu_{1}\right)+\ln \left(\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right) \\
& =\mathbf{x}^{T} \underbrace{\mathbf{S}^{-1}\left(\mu_{1}-\mu_{2}\right)}_{\mathbf{w}}+\underbrace{\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)^{T} \mathbf{S}^{-1}\left(\mu_{2}-\mu_{1}\right)+\ln \left(\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right)}_{b} \\
& =\mathbf{x}^{T} \mathbf{w}+b \quad \text { linear decision function: } \omega_{1} \text { if } \mathbf{x}^{T} \mathbf{w}+b>0
\end{aligned}
$$

LDA-Two Classes, Identical Covariance

LDA-Computation

$$
\left.\begin{array}{rl}
\hat{\mu}_{i}= & \frac{1}{N_{i}} \sum_{n=1}^{N_{i}} \mathbf{x}_{i, n} \\
\hat{\mathbf{S}}= & \frac{1}{N_{1}+N_{2}} \sum_{i=1}^{2} \sum_{n=1}^{N_{i}}\left(\mathbf{x}_{i, n}-\hat{\mu}_{i}\right)\left(\mathbf{x}_{i, n}-\hat{\mu}_{i}\right)^{T}
\end{array}\right\} \text { Density estimation } \quad \begin{aligned}
& \quad f(\mathbf{x})=\operatorname{sign}\left(\mathbf{x}^{T} \mathbf{w}+b\right) \\
& \quad \mathbf{w}=\hat{\mathbf{S}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right) \\
& b=\frac{1}{2}\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right)^{T} \mathbf{S}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)+\ln \underbrace{\left(\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right)}_{\text {Approximate by } \frac{N_{1}}{N_{2}}}
\end{aligned}
$$

QDA—Two classes, different covariance matrix

Quadratic Discriminant Analysis

decide ω_{1} if $f(\mathbf{x})>0$

$$
\begin{gathered}
f(\mathbf{x})=\ln \left(p\left(\mathbf{x} \mid \omega_{1}\right)\right)+\ln \left(P\left(\omega_{1}\right)\right)-\ln \left(p\left(\mathbf{x} \mid \omega_{2}\right)\right)-\ln \left(P\left(\omega_{2}\right)\right) \\
\ln \left(p\left(\mathbf{x} \mid \omega_{1}\right)\right)=-\frac{1}{2} \ln \left|\Sigma_{1}\right|-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma_{1}^{-1}\left(\mathbf{x}-\mu_{1}\right)+\ln P\left(\omega_{1}\right) \\
f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{w}^{T} \mathbf{x}+w_{0}-\text { quadratic }
\end{gathered}
$$

$$
\text { where } \quad \mathbf{A}=-\frac{1}{2}\left(\Sigma_{1}^{-1}-\Sigma_{2}^{-1}\right) \quad \text { - a matrix }
$$

$$
\begin{array}{ll}
\mathbf{w}=\Sigma_{1}^{-1} \mu_{1}-\Sigma_{2}^{-1} \mu_{2} & \text { - a vector } \\
w_{o}=\ldots & \text { well, the rest of it }
\end{array}-\text { a scalar }
$$

LDA Multiclass, Identical Covariance

Find the linear decision boundaries for k classes:
For two classes we have:

$$
f(\mathbf{x})=\mathbf{x}^{T} \mathbf{w}+b \quad \text { decide } \omega_{1} \text { if } f(\mathbf{x})>0
$$

In the multi-class case we have $k-1$ decision functions:

$$
\begin{aligned}
& f_{1,2}(\mathbf{x})=\mathbf{x}^{T} \mathbf{w}_{1,2}+b_{1,2} \\
& f_{1,3}(\mathbf{x})=\mathbf{x}^{T} \mathbf{w}_{1,3}+b_{1,3}
\end{aligned}
$$

$$
\vdots
$$

$$
f_{1, k}(\mathbf{x})=\mathbf{x}^{T} \mathbf{w}_{1, k}+b_{1, k}
$$

\Rightarrow we have to determine $(k-1)(p+1)$ parameters,
p is dimension of \mathbf{x}

LDA Multiclass, Identical Covariance

Find the n-dimensional subspace that gives the best linear discrimination betw. the k classes.
$\mathbf{y}=\left(\mathbf{w}_{1}\left|\mathbf{w}_{2}\right| \ldots \mid \mathbf{w}_{n}\right)^{T} \mathbf{x}$
also known as Fisher Linear Discriminant

LDA—Multiclass, Identical Covariance

Computation

compute the $d \times k$ matrix $\mathbf{M}=\left(\mu_{1}\left|\mu_{2}\right| \ldots \mid \mu_{k}\right)$ and cov. matrix \mathbf{S}
compute the $\mu^{\prime}: \mathbf{M}^{\prime}=\Gamma \mathbf{M}, \Sigma^{-1}=\Gamma^{T} \Gamma$
compute the cov. matrix \mathbf{B}^{\prime} of μ^{\prime}
compute the eigenvectors \mathbf{v}_{i}^{\prime} of \mathbf{B}^{\prime} ranked by eigenvalues
calculate \mathbf{y} by projecting \mathbf{x} into X^{\prime} and then onto the eigenvector:
$y_{i}=\mathbf{v}_{i}^{T} \Gamma \mathbf{x} \Rightarrow \mathbf{w}_{i}=\Gamma^{T} \mathbf{v}_{i}^{\prime}$

LDA-Fisher's Approach

Find \mathbf{w} such that the ratio of between-class and in-class variance is maximized if the data is projected onto \mathbf{w} :
$y=\mathbf{w}^{T} \mathbf{x}$
$\max \frac{\mathbf{w}^{T} \mathbf{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S} \mathbf{w}}, \quad \mathbf{B}=\mathbf{M M}^{T}$ the covariance of the μ 's
can be written as:
$\max \mathbf{w}^{T} \mathbf{B w}$ subject to $\mathbf{w}^{T} \mathbf{S w}=1$
generalized eigenvalue problem, solution are the ranked eigenvectors of $\mathbf{S}^{-1} \mathbf{B}$
...same is an previous derivation.

The Coffee Problem: LDA vs. PCA

Image removed due to copyright considerations. See: R. Gutierrez-Osuna http://research.cs.tamu.edu/prism/lectures/pr/pr_I10.pdf

LDA/QDA-Summary

Advantages:

- LDA is the Bayes classifier for multivariate Gaussian distributions with common covariance.
- LDA creates linear boundaries which are simple to compute.
- LDA can be used for representing multi-class data in low dimensions.
- QDA is the Bayes classifier for multivariate Gaussian distributions.
- QDA creates quadratic boundaries.

Problems:

- LDA is based on a single prototype per class (class center) which is often insufficient in practice.

Variants of LDA

Nonparameteric LDA (Fukunaga)

removes the unimodal assumption by the scatter matrix using local information.
More than $k-1$ features can be extracted.

Orthonormal LDA (Okada\&Tomita) computes projections that maximize separability and are pair-wise orthonormal.

Generalized LDA (Lowe)
Incorporates a cost function similar to Bayes Risk minimization.
....and many many more (see "Elements of Statistical
Learning" Hastie, Tibshirani, Friedman)

SVM—Linear, Separable (LS)

Dimension 1

Dimension 1

Find the separating function $f(\mathbf{x})=\operatorname{sign}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)$ which maximizes the margin $M=2 d$ on the training data. \Rightarrow Maximum margin classifier.

SVM—Primal, (LS)

Training data consists of N pairs $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}, y_{i} \in\{-1,1\}$.
The problem of maximizing the margin $2 d$ can be formulated as:
$\max _{\mathbf{w}^{\prime}, b} 2 d$ subject to $\left\{\begin{array}{c}y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}^{\prime}+b^{\prime}\right) \geq d \\ \left\|\mathbf{w}^{\prime}\right\|^{2}=1\end{array}\right.$

$$
\text { or alternatively: } \mathbf{w}=\mathbf{w}^{\prime} / d, b=b^{\prime} / d
$$

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \text { subject to } y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \geq 1 \text {, where } d=\frac{1}{\|\mathbf{w}\|}
$$

Convex optimization problem with quadratic objective function and linear constraints.

SVM—Dual, (LS)

Multiply constraint equations by positive Lagrange multipliers and subtract them from the objective function:
$L_{P}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)-1\right]$
Min. L_{P} w.r. t. \mathbf{w} and b and max. w.r. t. α_{i}, subject to $\alpha_{i} \geq 0$.
Set derivatives $\delta L_{P} / \delta \mathbf{w}$ and $\delta L_{P} / \delta b$ to zero and max. w.r. t. α_{i} :
$\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0$.
substititung in L_{p} we get the so called Wolfe dual:
$\max . L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}{ }^{T} \mathbf{x}_{k}$
subject to $\alpha_{i} \geq 0, \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0$
solve for α_{i} then
compute $\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}$ and
b from $\alpha_{i}\left[y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{w}+b\right)-1\right]=0$

SVM——Primal vs. Dual (LS)

Primal:

$$
\min _{\mathbf{w}, b} \frac{\|\mathbf{w}\|}{2} \text { subject to: } y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \geq 1
$$

Dual:

$$
\max _{\alpha_{i}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \text { subject to: } \alpha_{i} \geq 0, \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

The primal has a dense inequality constraint for every point in the training set. The dual has a single dense equality constraint and a set of box constraints which makes it easier to solve than the primal.

Optimality conditions for the linearly separable data:

$$
\begin{aligned}
& \sum_{i=1}^{N} \alpha_{i} y_{i}=0, \quad \alpha_{i} \geq 0 \forall i, \quad y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)-1 \geq 0 \quad \forall i \\
& \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \Rightarrow f(\mathbf{x})=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x}+b
\end{aligned}
$$

$$
\alpha_{i}\left(y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)-1\right)=0 \forall i \Rightarrow \alpha_{i}=0 \text { for points which are }
$$

SVM—Linear, non-separable (LNS)

$$
\begin{array}{|l|}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{\mathrm{i}=1}^{\mathrm{N}} \xi_{i} \text { subject to: } \\
y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \geq 1-\xi_{i} \forall i, \quad \xi_{i}>0 \forall i \\
\xi_{i} \text { are called slack variables } \\
C \text { constant, penalizes errors }
\end{array}
$$

SVM——Dual (LNS)

Same procedure as in separable case
$\operatorname{max.} L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}$
subject to $0 \leq \alpha_{i} \leq C, \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0$
solve for α_{i} then
compute $\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}$ and
b from $y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{w}+b\right)-1=0$
for any sample \mathbf{x}_{i} for which $0<\alpha_{i}<C$

$$
\alpha_{i}=0 \Rightarrow \xi_{i}=0, y_{i} f\left(\mathbf{x}_{i}\right)>1
$$

$$
0<\alpha_{i}<C \Rightarrow \xi_{i}=0 \quad y_{i} f\left(\mathbf{x}_{i}\right)=1 \quad \Delta \quad \text { unbounded support vectors }
$$

$$
\alpha_{i}=C \Rightarrow \xi_{i} \geq 0, \quad y_{i} f\left(\mathbf{x}_{i}\right) \leq 1 \quad \text { ■ bounded support vectors }
$$

SVM—Non-linear (NL)

Non-linear mapping:

$$
\mathbf{x}^{\prime}=\Phi(\mathbf{x})
$$

Project into feature space, apply SVM procedure

SVM—Kernel Trick

$$
\begin{aligned}
& \max . \quad \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{\prime T} \mathbf{x}_{k}^{\prime} \\
& \text { subject to } 0 \leq \alpha_{i} \leq C, \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{aligned}
$$

Only the inner product of the samples appears in the objective function. If we can write: $K\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)=\mathbf{x}_{i}^{\prime T} \mathbf{x}_{k}^{\prime}$ we can avoid any computations in the feature space.

The solution $f\left(\mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{w}+b$ can be written as:
$f(\mathbf{x})=\sum_{i=1}^{N} \alpha_{i} y_{i} \Phi(\mathbf{x})^{T} \Phi\left(\mathbf{x}_{i}\right)+b=\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b$ using $\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}^{\prime}$.

When is a Kernel $K(\mathbf{u}, \mathbf{v})$ an inner product in a Hilbert space?
$K(\mathbf{u}, \mathbf{v})=\sum_{n} \lambda_{n} \bar{\phi}_{n}(\mathbf{u}) \phi_{n}(\mathbf{v})$
with positive coefficients λ_{n}
if for any $g(\mathbf{u}) \in L_{2}$
$\int K(\mathbf{u}, \mathbf{v}) g(\mathbf{u}) \bar{g}(\mathbf{v}) d \mathbf{u} d \mathbf{v} \geq 0 \quad$ Mercer's condition

Some examples of commonly used kernels:
Linear kernel:
$\mathbf{u}^{T} \mathbf{v}$
Polynomial kernel:
$\left(1+\mathbf{u}^{T} \mathbf{v}\right)^{d}$
Gaussian kernel (RBF): $\quad \exp \left(-\|\mathbf{u}-\mathbf{v}\|^{2}\right)$, shift invar.
MLP:
$\tanh \left(\mathbf{u}^{T} \mathbf{v}-\theta\right)$

SVM—Polynomial Kernel

Polynomial second degree kernel

$$
\begin{aligned}
& K(\mathbf{u}, \mathbf{v})=\left(1+\mathbf{u}^{T} \mathbf{v}\right)^{2}, \quad \mathbf{u}, \mathbf{v} \in \mathbb{R}^{2} \\
& =1+\left(u_{1} v_{1}\right)^{2}+\left(u_{2} v_{2}\right)^{2}+2 u_{1} v_{1} u_{2} v_{2}+u_{1} v_{1}+u_{2} v_{2} \\
& =\left(1, u_{1}{ }^{2}, u_{2}{ }^{2}, \sqrt{2} u_{1} u_{2}, u_{1}, u_{2}\right)\left(1, v_{1}^{2}, v_{2}^{2}, \sqrt{2} v_{1} v_{2}, v_{1}, v_{2}\right)^{T} \\
& \Phi(\mathbf{x})=\left(1, x_{1}^{2}, x_{2}{ }^{2}, \sqrt{2} x_{1} x_{2}, x_{1}, x_{2}\right)^{T}
\end{aligned}
$$

Shift invariant kernel $K(\mathbf{u}, \mathbf{v})=K(\mathbf{u}-\mathbf{v})$ defined on $L^{2}\left([0, T]^{d}\right)$ can be written as the Fourier series of K :

$$
\begin{aligned}
& f(t)=\frac{1}{T} \sum_{k=-\infty}^{\infty} \lambda_{k} e^{\frac{j 2 \pi k t}{T}}, f\left(t-t_{0}\right)=\frac{1}{T} \sum_{k=-\infty}^{\infty} \lambda_{k} e^{\frac{j 2 \pi k t}{T}} e^{-\frac{j 2 \pi k t_{0}}{T}} \\
& K(\mathbf{u}-\mathbf{v})=\sum_{k=0}^{\infty} \lambda_{k} e^{j 2 \pi \mathbf{k}_{k} \mathbf{u}} e^{-j 2 \pi \mathbf{k}_{k} \mathbf{v}} \forall \mathbf{k}_{k} \in Z\left([-\infty, \infty]^{d}\right)
\end{aligned}
$$

SVM—Uniqueness

Are the α_{i} in the solution unique? No
$f(\mathbf{x})=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}{ }^{T} \mathbf{x}+b$
$\mathbf{w}=(1,0)$
two solutions:
$\alpha=(0.25,0.25,0.25,0.25)$
$\alpha=(0.5,0.5,0,0)$

constraints: $\alpha_{i} \geq 0, \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0$ are satisfied
More important: is the solution $f(\mathbf{x})$ unique?
Yes, the solution is unique and global
if the objective function is strictly convex.

Bottom-Up 1vs1

Training: $k(k-1) / 2$
Classification : k-1

1 vs. All

Training: $\quad k$
Classification : k

How to choose the kernel?
Linear SVMs are simple to compute, fast at runtime but often not sufficient for complex tasks.

SVM with Gaussian kernels showed excellent performance in many applications (after some tuning of sigma). Slow at run-time.

Polynomial with $2^{\text {nd }}$ are commonly used in computer vision applications. Good trade off between classification performance computational complexity.

SVM-Example

Face detection with linear and $2^{\text {nd }}$ degree polyn. SVM \& LDA

(CMU Testset 1, 127 images, 479 faces, 56.774 .966 windows, res 19×19, pos 2429 , neg 19932)

SVM-Choosing C

How to choose the C-value?

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{\mathrm{i}=1}^{\mathrm{N}} \xi_{i}
$$

C-value penalizes points within the margin.
Large C-value can lead to poor generalization performance (over-fitting).
From own experience in object detection tasks:
Find a kernel and C-values which give you zero errors on the training set.

SVM-Computation during Classification

In computer vision applications fast classification is usually more important than fast training.

Two ways of computing the decision function $f(\mathbf{x})$:
a) $\mathbf{w}^{T} \Phi(\mathbf{x})+b \quad$ b) $\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b \quad$ Which one is faster?
-For a linear kernel a)
-For a polynomial 2nd degree kernel:
Multiplications for a): $G_{\Phi, \text { poly } 2}=(n+2) n$, where n is dim. of \mathbf{x}
Multiplications for b): $G_{K, \text { poly } 2}=(n+2) s$, where s is $n b$. of sv's
-Gaussian kernel: only b) since dim. of $\Phi(\mathbf{x})$ is ∞.

From a given set of training examples $\left\{\mathbf{x}_{i}, y_{i}\right\}$ learn the mapping $\mathbf{x} \rightarrow y$. The learning machine is defined by a set of possible mappings $\mathbf{x} \rightarrow f(\mathbf{x}, \alpha)$ where α is the adjustable parameter of f.
The goal is to minimize the expected risk R :
$R(\alpha)=\int V(f(\mathbf{x}, \alpha), y) d P(\mathbf{x}, y)$
V is the loss function
P is the probability distribution function

We can't compute $R(\alpha)$ since we don't know $P(\mathbf{x}, y)$

Learning Theory -Empirical Risk Minimization

To solve the problem minimize the "empirical risk" $R_{\text {emp }}$ over the training set:
$R_{\text {emp }}(\alpha)=\frac{1}{N} \sum_{i=1}^{N} V\left(f\left(\mathbf{x}_{i}, \alpha\right), y_{i}\right)$
V is the loss function

Common loss functions:

$$
\begin{aligned}
& V(f(\mathbf{x}), y)=(y-f(\mathbf{x}))^{2} \text { least squares } \\
& V(f(\mathbf{x}), y)=(1-y f(\mathbf{x}))_{+} \text {hinge loss where }(x)_{+} \equiv \max (x, 0)
\end{aligned}
$$

Learning Theory \& SVM

Bound on the expected risk:
For a loss function with $0 \leq V(f(\mathbf{x}), y) \leq 1$ with probability
$1-\eta, 0 \leq \eta \leq 1$ the following bound holds:
$R(\alpha) \leq R_{\text {emp }}(\alpha)+\sqrt{\frac{h \ln (2 N / h)+h-\ln (\eta / 4)}{N}}$
$R_{\text {enp }}(\alpha)$ empirical risk
N number of training examples
Bound is independant of the probablility distribution $P(\mathbf{x}, y)$.
h Vapnik Chervonenkis (VC) dimension

Keep all parameters in the bound fixed except one:
$(1-\eta) \uparrow$ bound $\uparrow, N \uparrow$ bound $\downarrow, h \uparrow$ bound \uparrow

Learning Theory VC Dimension

The VC dimension is a property of the set of functions $\{f(\alpha)\}$. If for a set of N points labeled in all 2^{N} possible ways one can find an $f \in\{f(\alpha)\}$ which separates the points correctly one says that the set of points is shattered by $\{f(\alpha)\}$.
The VC dimension is the maximum number of points that can be shattered by $\{f(\alpha)\}$.

The VC dimension of a functions $f: \mathbf{w}^{T} \mathbf{x}+b=0$ in 2 dim :

Learning Theory-SVM

The expected risk $E(R)$ for the optimal hyperplanes:
$E(R) \leq \frac{E\left(D^{2} / M^{2}\right)}{N}$
where the expectation is over all training sets of size N.
'Algorithms that maximize the margin have better generalization performance.'

Bounds

Most bounds on expected risk are very loose to compute instead:

Cross Validation Error

Error on a cross validation set which is different from the training set.

Leave-one-out Error

Leave one training example out of the training set, train classifier and test on the example which was left out. Do this for all examples.
For SVMs upper bounded by the \# of support vectors.

Given N examples $\left(\mathbf{x}_{i}, y_{i}\right), \mathbf{x} \in \mathbf{R}^{n}, y \in\{0,1\}$ solve:
$\min _{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} V\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)+\gamma\|f\|_{K}^{2}$
where $\|f\|_{K}^{2}$ is the norm in a Reproducing Kernel
Hilbert Space (RKHS) \mathcal{H}, with the reproducing kernel K,
γ is the regularization parameter.
$\gamma\|f\|_{K}^{2}$ can be interpreted as a smoothness constraint.
Under rather general conditions the solution can be written as:
$f(\mathbf{x})=\sum_{i=1}^{N} c_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$

Regularization-Reproducing Kernel Hilbert Space (RKHS)

Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}

$f(\mathbf{x})=\langle\bar{K}(\mathbf{x}, \mathbf{y}), f(\mathbf{y})\rangle_{\mathcal{H}}$
Positive numbers λ_{n} and orthonormal set of
functions $\phi_{n}(\mathbf{x}), \quad \int \overline{\phi_{n}}(\mathbf{x}) \phi_{m}(\mathbf{x}) d \mathbf{x}=0$ for $n \neq m$, and 1 otherwise :
$K(\mathbf{x}, \mathbf{y}) \equiv \sum_{n} \lambda_{n} \overline{\phi_{n}}(\mathbf{x}) \phi_{n}(\mathbf{y}), \lambda_{n}$ are nonnegative eigenvalues of K
$f(\mathbf{x})=\sum_{n} a_{n} \phi_{n}(\mathbf{x}), \quad a_{n}=\int f(\mathbf{x}) \overline{\phi_{n}}(\mathbf{x}) d \mathbf{x}$,
$\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{\mathcal{H}} \equiv \sum_{n} \frac{a_{n}}{\sqrt{\lambda_{n}}} \frac{b_{n}}{\sqrt{\lambda_{n}}}$
$\|f(\mathbf{x})\|_{\mathcal{H}}=\langle f(\mathbf{x}), f(\mathbf{x})\rangle_{\mathcal{H}}=\sum_{n} a_{n}^{2} / \lambda_{n}$

Kernel is a one dimensional Gaussian with $\sigma=1$:
$K(x, y)=\exp \left(-(x-y)^{2}\right), x, y$ in $[0,1]$
write $K(x, y)$ as Fourier expansion using
shift theorem:
$K(x, y)=\sum_{n} \lambda_{n} \exp (j 2 \pi n x) \exp (-j 2 \pi n y) \quad$ Period $T=1$
where λ_{n} are the Fourier coeff. of $\exp \left(-x^{2}\right)$
$\lambda_{n}=A \exp \left(-n^{2} / 2\right)$
λ_{n} decreases with higher frequencies (increasing n).
This is a property of most kernels. The regularization term:
$\|f(x)\|_{\mathcal{H}}=\sum_{n} a_{n}^{2} / \lambda_{n}$, where a_{n} are the Fourier coeff. of $f(x)$
penalizes high freq. more than low freq. \rightarrow smoothness!

Regularization-SVM

For the hinge loss function $V(f(\mathbf{x}), y)=(1-y f(\mathbf{x}))_{+}$it can be shown that the regularization problem is equivalent to the SVM problem:
$\min _{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N}\left(1-y_{i} f\left(\mathbf{x}_{i}\right)\right)_{+}+\lambda\|f\|_{K}^{2}$
introducing slack variables $\xi_{i}=1-y_{i} f\left(\mathbf{x}_{i}\right)$ we can rewrite:
$\min _{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \xi_{i}+\lambda\|f\|_{K}^{2}$, subject to: $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1-\xi_{i}$, and $\xi_{i} \geq 0 \forall i$
It can be shown that this is equivalent to the SVM problem (up to b) : SVM: $\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \quad C=1 /(2 \lambda N)$ subject to: $y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0 \forall i$

SVM—Summary

- SVMs are maximum margin classifiers.
- Only training points close to the boundary (support vectors) occur in the SVM solution.
- The SVM problem is convex, the solution is global and unique.
- SVMs can handle non-separable data.
- Non-linear separation in the input space is possible by projecting the data into a feature space.
- All calculations can be done in the input space (kernel trick).
- SVMs are known to perform well in high dimensional problems with few examples.
- Depending on the kernel, SVMs can be slow during classification
- SVMs are binary classifiers. Not efficient for problems with large number of classes.

Literature

T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer, 2001:
LDA, QDA, extensions to LDA, SVM \& Regularization.
C. Burges: A Tutorial on SVM for Pattern Recognition, 1999: Learning Theory, SVM.
R. Rifkin: Everything Old is New again: A fresh Look at Historical Approaches in Machine Learning, 2002: SVM training, SVM multiclass.
T. Evgeniou, M. Pontil, T. Poggio: Regularization Networks and SVMs, 1999: SVM \& Regularization.
V. Vapnik: The Nature of Statistical Learning, 1995:

Statistical learning theory, SVM.

Homework

Classification problem on the NIST handwritten digits data involving PCA, LDA and SVMs.

PCA code will be posted today

