New Schedule

	Sep 16 - Vision - Image formation and processing	Y
	Sep 23 - Vision – Feature extraction I	В
	Sep 30 - PR/Vis - Feature Extraction II/Bayesian decisions	B&Y
	Oct 7 - PR - Density estimation	Y papers
	Oct 14 - PR – Clasification	В
Dec. 8	Oct 21 - Biological Object Recognition	Т
same	Oct 28 - PR - Clustering	Y&B proj
same	Nov 4 - Paper Discussion	All
same	Nov 11 - App I - Object Detection/Recognition	В
Oct. 21	Nov 18 - App II - Morphable models	Т&В
	Nov 25 - No class - Thanksgiving day	
^2 weeks	Dec 2 - App III - Tracking	C&Y
^1 week	Dec 9 - App IV - Gesture and Action Recognition	Y
^1 week	Dec 16 - Project presentation	All
)

9.913 Pattern Recognition for Vision

Classification Bernd Heisele

Introduction

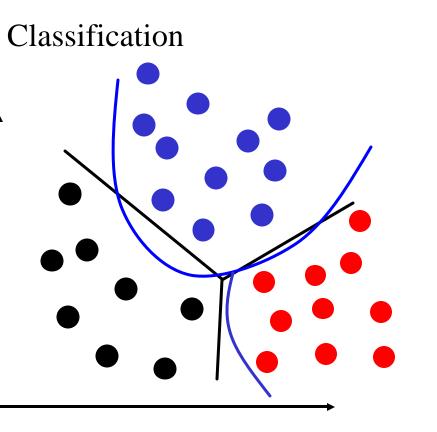
Linear Discriminant Analysis

Support Vector Machines

Literature & Homework

Introduction

- Linear, non-linear separation
- Two class, multi-class problems

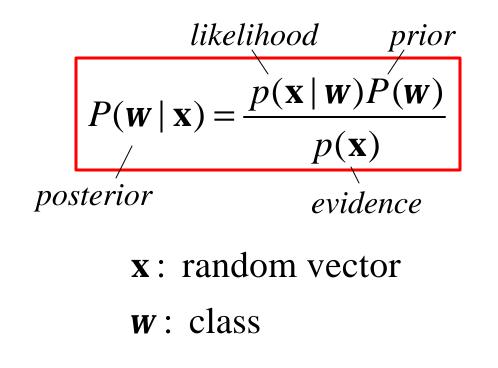


Two approaches:

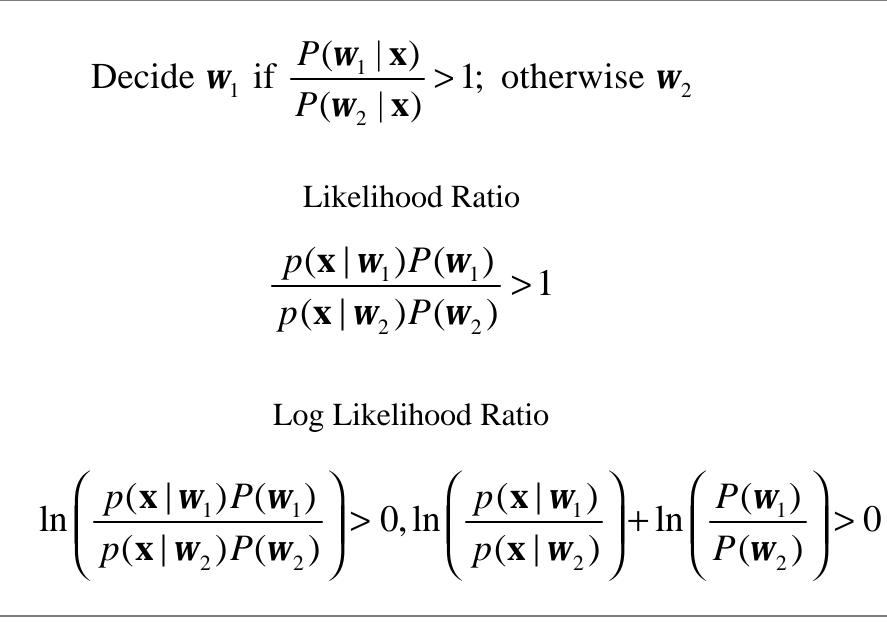
- Density estimation, classify with Bayes decision: Linear Discr. Analysis (LDA), Quadratic Discr. Analysis (QDA)
- Without density estimation: Support Vector Machines (SVM)

Bayes Rule

$$p(\mathbf{x}, \mathbf{w}) = p(\mathbf{x} | \mathbf{w}) P(\mathbf{w}) = P(\mathbf{w} | \mathbf{x}) p(\mathbf{x}) \implies$$



LDA—Bayes Decision Rule



LDA—Two Classes, Identical Covariance

Gaussian:
$$p(\mathbf{x} | \mathbf{w}_i) = \frac{1}{(2\mathbf{p})^{d/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \Sigma_i^{-1} (\mathbf{x} - \mathbf{m}_i)}$$

assume identical covariance matrices $\Sigma_1 = \Sigma_2$:

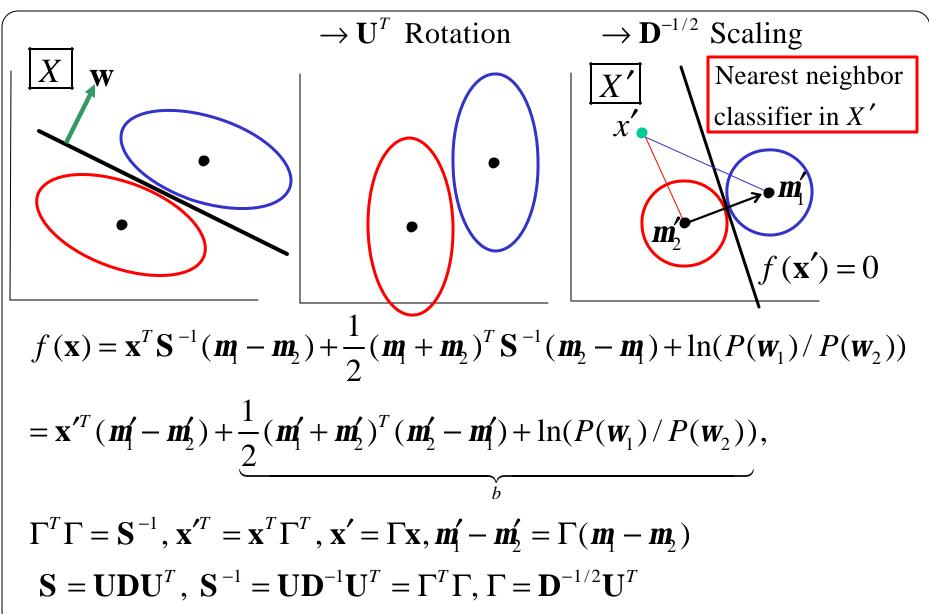
$$\ln\left(\frac{p(\mathbf{x} \mid \mathbf{w}_{1})}{p(\mathbf{x} \mid \mathbf{w}_{2})}\right) + \ln\left(\frac{P(\mathbf{w}_{1})}{P(\mathbf{w}_{2})}\right)$$

$$= \frac{1}{2}(\mathbf{x} - \mathbf{m}_{2})^{T} \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_{2}) - \frac{1}{2}(\mathbf{x} - \mathbf{m}_{1})^{T} \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_{1}) + \ln\left(\frac{P(\mathbf{w}_{1})}{P(\mathbf{w}_{2})}\right)$$

$$= \mathbf{x}^{T} \underbrace{\mathbf{S}^{-1}(\mathbf{m}_{1} - \mathbf{m}_{2})}_{\mathbf{w}} + \underbrace{\frac{1}{2}(\mathbf{m}_{1} + \mathbf{m}_{2})^{T} \mathbf{S}^{-1}(\mathbf{m}_{2} - \mathbf{m}_{1}) + \ln\left(\frac{P(\mathbf{w}_{1})}{P(\mathbf{w}_{2})}\right)}_{b}$$

$$= \mathbf{x}^{T} \mathbf{w} + b \quad \text{linear decision function: } \mathbf{w}_{1} \text{ if } \mathbf{x}^{T} \mathbf{w} + b > 0$$

LDA—Two Classes, Identical Covariance



LDA—Computation

$$\hat{\boldsymbol{m}}_{l} = \frac{1}{N_{i}} \sum_{n=1}^{N_{i}} \boldsymbol{x}_{i,n}$$

$$\hat{\boldsymbol{S}} = \frac{1}{N_{1} + N_{2}} \sum_{i=1}^{2} \sum_{n=1}^{N_{i}} (\boldsymbol{x}_{i,n} - \hat{\boldsymbol{m}}_{i}) (\boldsymbol{x}_{i,n} - \hat{\boldsymbol{m}}_{i})^{T}$$
Density estimation
$$f(\boldsymbol{x}) = sign(\boldsymbol{x}^{T} \boldsymbol{w} + b)$$

$$\boldsymbol{w} = \hat{\boldsymbol{S}}^{-1}(\hat{\boldsymbol{m}}_{1} - \hat{\boldsymbol{m}}_{2})$$

$$b = \frac{1}{2} (\hat{\boldsymbol{m}}_{1} + \hat{\boldsymbol{m}}_{2})^{T} \boldsymbol{S}^{-1}(\hat{\boldsymbol{m}}_{2} - \hat{\boldsymbol{m}}_{1}) + \ln \underbrace{\left(\frac{P(\boldsymbol{w}_{1})}{P(\boldsymbol{w}_{2})}\right)}_{\text{Approximate by} \frac{N_{1}}{N_{2}}}$$

Quadratic Discriminant Analysis

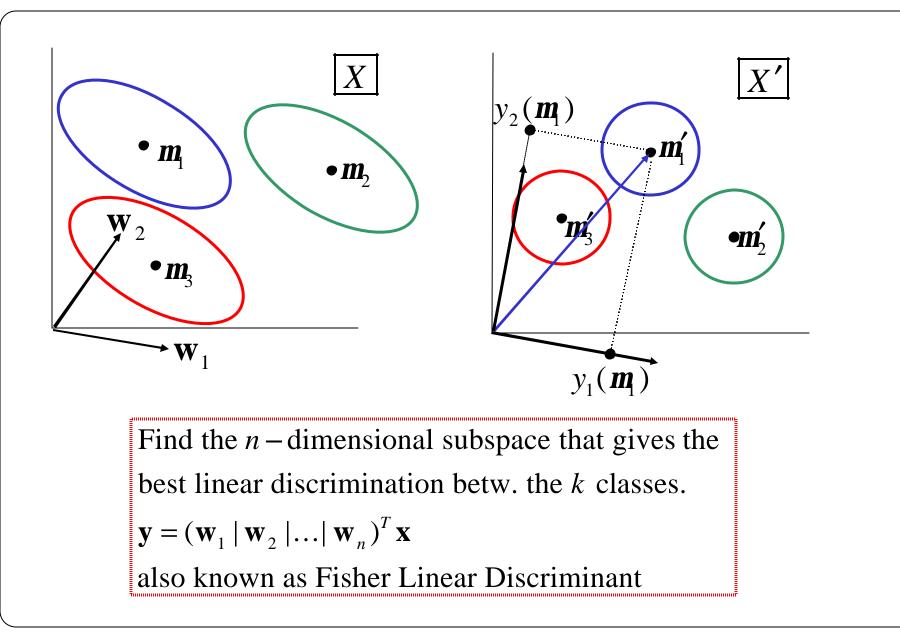
decide
$$\mathbf{w}_{1}$$
 if $f(\mathbf{x}) > 0$
 $f(\mathbf{x}) = \ln(p(\mathbf{x} | \mathbf{w}_{1})) + \ln(P(\mathbf{w}_{1})) - \ln(p(\mathbf{x} | \mathbf{w}_{2})) - \ln(P(\mathbf{w}_{2}))$
 $\ln(p(\mathbf{x} | \mathbf{w}_{1})) = -\frac{1}{2} \ln |\Sigma_{1}| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_{1})^{T} \Sigma_{1}^{-1} (\mathbf{x} - \mathbf{m}_{1}) + \ln P(\mathbf{w}_{1})$
 $f(\mathbf{x}) = \mathbf{x}^{T} \mathbf{A} \mathbf{x} + \mathbf{w}^{T} \mathbf{x} + w_{0} - quadratic$
where $\mathbf{A} = -\frac{1}{2} (\Sigma_{1}^{-1} - \Sigma_{2}^{-1})$ - a matrix
 $\mathbf{w} = \Sigma_{1}^{-1} \mathbf{m}_{1} - \Sigma_{2}^{-1} \mathbf{m}_{2}$ - a vector
 $w_{o} = \dots$ well, the rest of it - a scalar

Find the linear decision boundaries for k classes: For two classes we have:

$$f(\mathbf{x}) = \mathbf{x}^{T}\mathbf{w} + b \quad \text{decide } \mathbf{w}_{1} \text{ if } f(\mathbf{x}) > 0$$

In the multi-class case we have k -1 decision functions:
$$f_{1,2}(\mathbf{x}) = \mathbf{x}^{T}\mathbf{w}_{1,2} + b_{1,2},$$
$$f_{1,3}(\mathbf{x}) = \mathbf{x}^{T}\mathbf{w}_{1,3} + b_{1,3},$$
$$\vdots$$
$$f_{1,k}(\mathbf{x}) = \mathbf{x}^{T}\mathbf{w}_{1,k} + b_{1,k}$$
$$\Rightarrow \text{ we have to determine } (k-1)(p+1) \text{ parameters,}$$
$$p \text{ is dimension of } \mathbf{x}$$

LDA Multiclass, Identical Covariance



Computation

compute the $d \times k$ matrix $\mathbf{M} = (\mathbf{m}_1 | \mathbf{m}_2 | ... | \mathbf{m}_k)$ and cov. matrix **S**

compute the $\boldsymbol{m'}$: $\mathbf{M'} = \Gamma \mathbf{M}$, $\boldsymbol{\Sigma}^{-1} = \Gamma^T \Gamma$

compute the cov. matrix $\mathbf{B'}$ of $\mathbf{m'}$

compute the eigenvectors \mathbf{v}'_i of \mathbf{B}' ranked by eigenvalues

calculate **y** by projecting **x** into X' and then onto the eigenvector: $y_i = \mathbf{v}_i^T \Gamma \mathbf{x} \Rightarrow \mathbf{w}_i = \Gamma^T \mathbf{v}_i'$ Find **w** such that the ratio of between-class and in-class variance is maximized if the data is projected onto **w** :

$$y = \mathbf{w}^T \mathbf{x}$$

max $\frac{\mathbf{w}^T \mathbf{B} \mathbf{w}}{\mathbf{w}^T \mathbf{S} \mathbf{w}}$, $\mathbf{B} = \mathbf{M} \mathbf{M}^T$ the covariance of the **m**'s

can be written as:

max $\mathbf{w}^T \mathbf{B} \mathbf{w}$ subject to $\mathbf{w}^T \mathbf{S} \mathbf{w} = 1$ generalized eigenvalue problem, solution are the ranked eigenvectors of $\mathbf{S}^{-1}\mathbf{B}$...same is an previous derivation. Image removed due to copyright considerations. See: R. Gutierrez-Osuna http://research.cs.tamu.edu/prism/lectures/pr/pr_l10.pdf

Advantages:

- LDA is the Bayes classifier for multivariate Gaussian distributions with common covariance.
- LDA creates linear boundaries which are simple to compute.
- LDA can be used for representing multi-class data in low dimensions.
- QDA is the Bayes classifier for multivariate Gaussian distributions.
- QDA creates quadratic boundaries.

Problems:

• LDA is based on a single prototype per class (class center) which is often insufficient in practice.

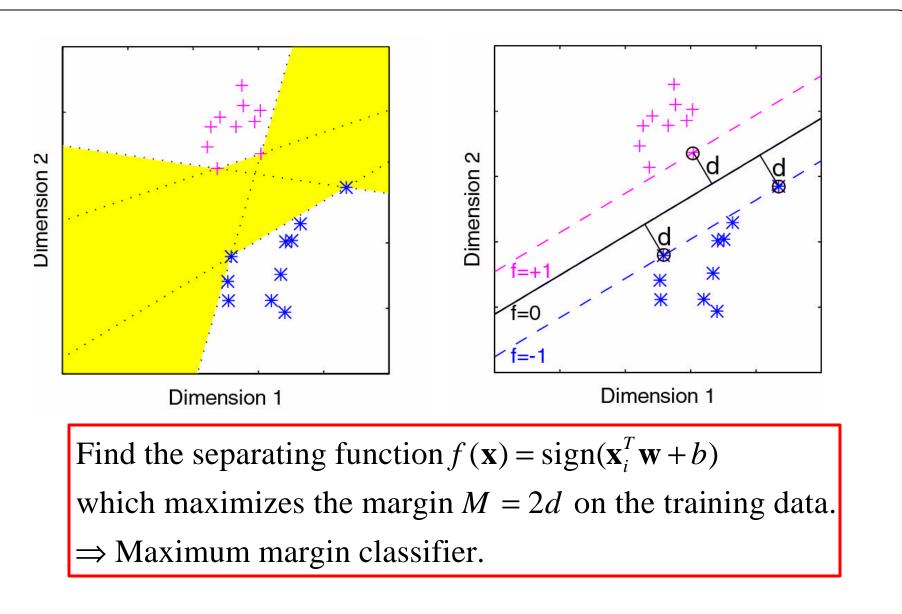
Nonparameteric LDA (Fukunaga) removes the unimodal assumption by the scatter matrix using local information. More than *k*-1 features can be extracted.

Orthonormal LDA (Okada&Tomita) computes projections that maximize separability and are pair-wise orthonormal.

Generalized LDA (Lowe) Incorporates a cost function similar to Bayes Risk minimization.

....and many many more (see "Elements of Statistical Learning" Hastie, Tibshirani, Friedman)

SVM—Linear, Separable (LS)



SVM—Primal, (LS)

Training data consists of N pairs $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}, y_i \in \{-1, 1\}$. The problem of maximizing the margin 2d can be formulated as: $\max_{\mathbf{w}',b} 2d \text{ subject to } \begin{cases} y_i(\mathbf{x}_i^T \mathbf{w}' + b') \ge d \\ \|\mathbf{w}'\|^2 = 1 \end{cases}$ Dimension 2 or alternatively: $\mathbf{w} = \mathbf{w'}/d$, b = b'/d**Dimension 1** $\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } y_i(\mathbf{x}_i^T \mathbf{w} + b) \ge 1, \text{ where } d = \frac{1}{\|\mathbf{w}\|}$ Convex optimization problem with quadratic objective function and

linear constraints.

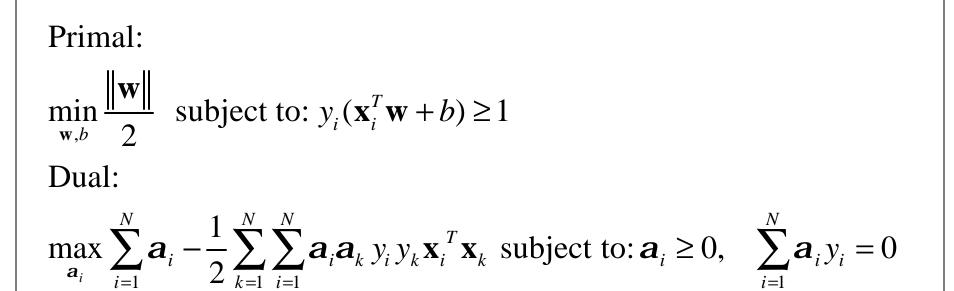
Multiply constraint equations by positive Lagrange multipliers and subtract them from the objective function:

$$L_{P} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{N} \boldsymbol{a}_{i} \left[y_{i} (\mathbf{x}_{i}^{T} \mathbf{w} + b) - 1 \right]$$

Min. L_p w.r. t. w and b and max. w.r. t. a_i , subject to $a_i \ge 0$. Set derivatives dL_p/dw and dL_p/db to zero and max. w.r. t. a_i :

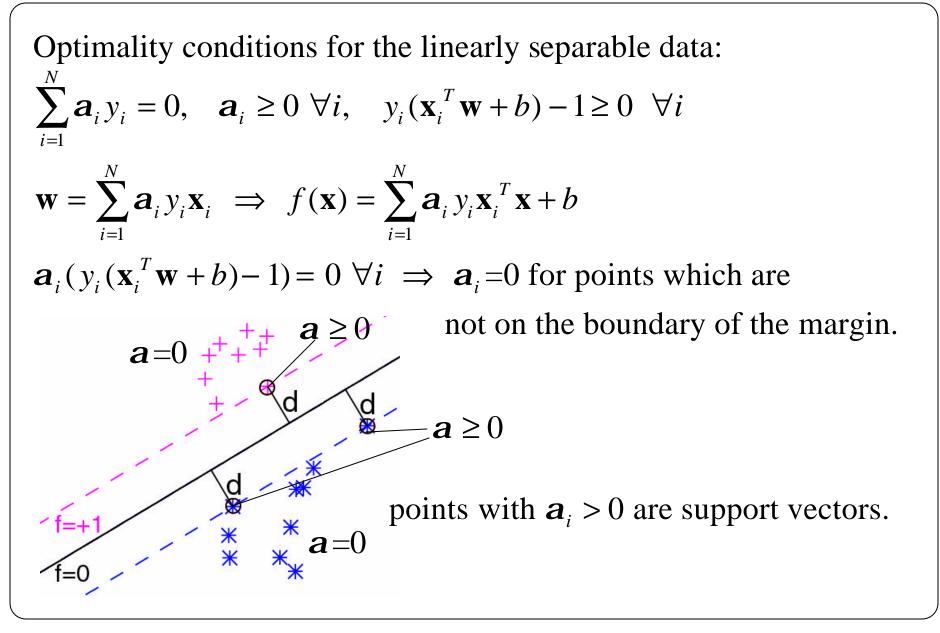
$$\mathbf{w} = \sum_{i=1}^{N} \mathbf{a}_{i} y_{i} \mathbf{x}_{i}, \quad \sum_{i=1}^{N} \mathbf{a}_{i} y_{i} = 0.$$
substituting in L_{p} we get the so called Wolfe dual:
max. $L_{D} = \sum_{i=1}^{N} \mathbf{a}_{i} - \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \mathbf{a}_{i} \mathbf{a}_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}$
solve for \mathbf{a}_{i} then
compute $\mathbf{w} = \sum_{i=1}^{N} \mathbf{a}_{i} y_{i} \mathbf{x}_{i}$ and
subject to $\mathbf{a}_{i} \ge 0, \quad \sum_{i=1}^{N} \mathbf{a}_{i} y_{i} = 0$

$$\begin{cases} \text{solve for } \mathbf{a}_{i} \text{ then} \\ \text{compute } \mathbf{w} = \sum_{i=1}^{N} \mathbf{a}_{i} y_{i} \mathbf{x}_{i} \text{ and} \\ b \text{ from } \mathbf{a}_{i} \left[y_{i} (\mathbf{x}_{i}^{T} \mathbf{w} + b) - 1 \right] = 0 \end{cases}$$

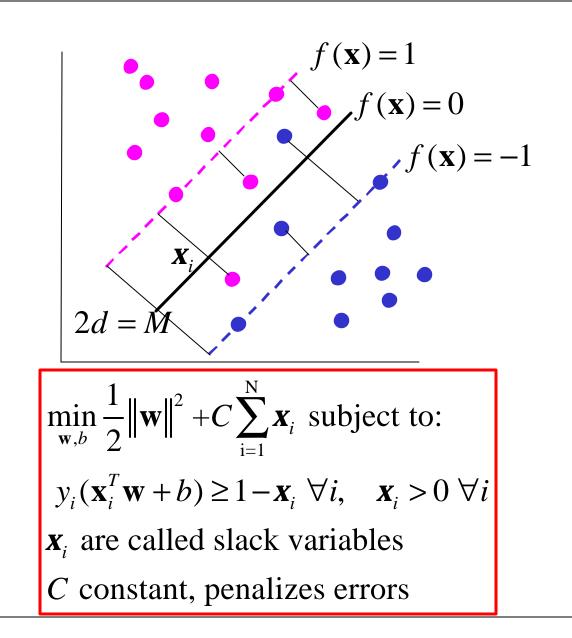


The primal has a dense inequality constraint for every point in the training set. The dual has a single dense equality constraint and a set of box constraints which makes it easier to solve than the primal.

SVM—Optimality Conditions (LS)



SVM—Linear, non-separable (LNS)



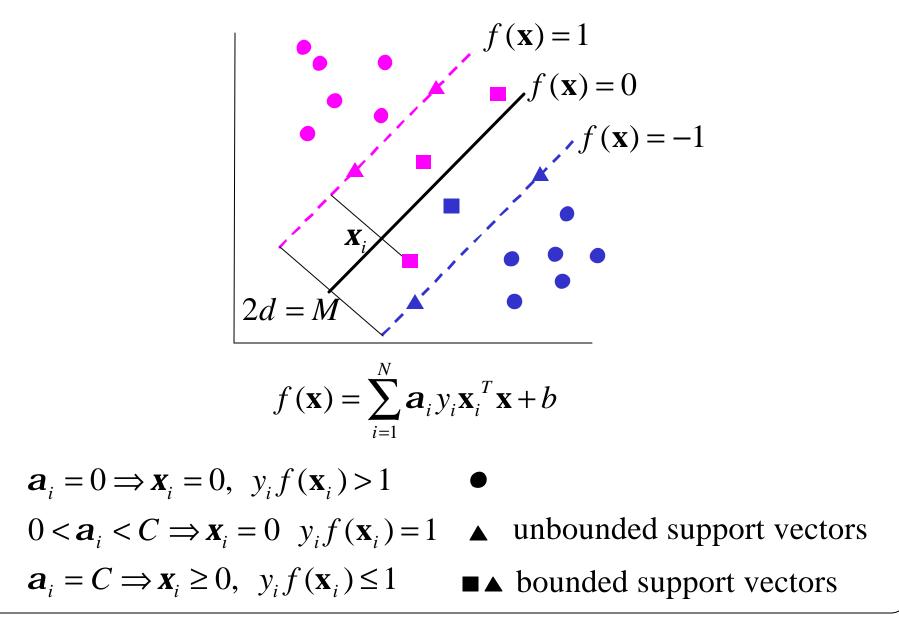
SVM—Dual (LNS)

Same procedure as in separable case

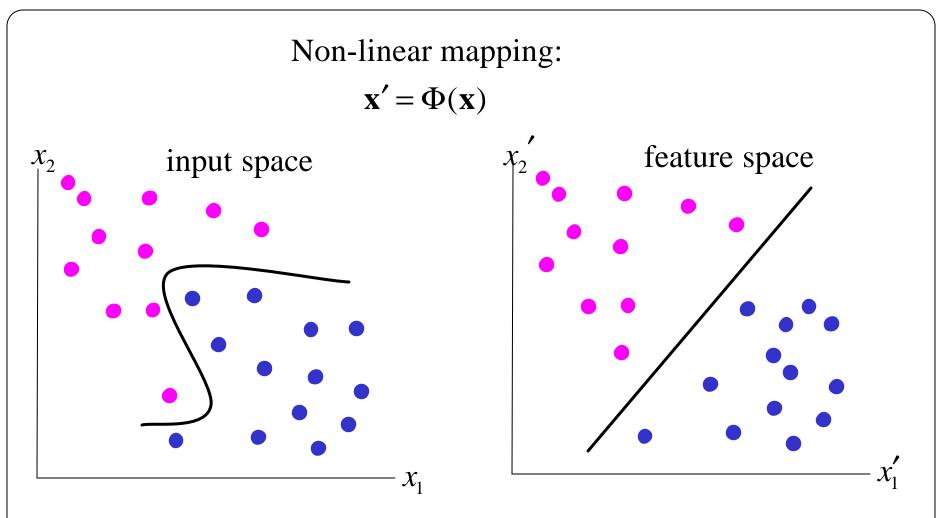
max.
$$L_D = \sum_{i=1}^{N} \boldsymbol{a}_i - \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \boldsymbol{a}_i \boldsymbol{a}_k y_i y_k \mathbf{x}_i^T \mathbf{x}_k$$

subject to $0 \le \boldsymbol{a}_i \le C$, $\sum_{i=1}^{N} \boldsymbol{a}_i y_i = 0$

solve for \mathbf{a}_i then compute $\mathbf{w} = \sum \mathbf{a}_i y_i \mathbf{x}_i$ and b from $y_i (\mathbf{x}_i^T \mathbf{w} + b) - 1 = 0$ for any sample \mathbf{x}_i for which $0 < \mathbf{a}_i < C$ SVM—Optimality Conditions (LNS)



SVM—Non-linear (NL)



Project into feature space, apply SVM procedure

SVM—Kernel Trick

max.
$$\sum_{i=1}^{N} \boldsymbol{a}_{i} - \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} \boldsymbol{a}_{i} \boldsymbol{a}_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}^{\prime}$$
subject to $0 \le \boldsymbol{a}_{i} \le C$,
$$\sum_{i=1}^{N} \boldsymbol{a}_{i} y_{i} = 0$$

Only the inner product of the samples appears in the objective function. If we can write: $K(\mathbf{x}_i, \mathbf{x}_k) = \mathbf{x}_i'^T \mathbf{x}_k'$ we can avoid any computations in the feature space. The solution $f(\mathbf{x}') = \mathbf{x}'^T \mathbf{w} + b$ can be written as:

$$f(\mathbf{x}) = \sum_{i=1}^{N} \boldsymbol{a}_{i} y_{i} \Phi(\mathbf{x})^{T} \Phi(\mathbf{x}_{i}) + b = \sum_{i=1}^{N} \boldsymbol{a}_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b$$

using $\mathbf{w} = \sum \boldsymbol{a}_{i} y_{i} \mathbf{x}'_{i}$.

When is a Kernel $K(\mathbf{u}, \mathbf{v})$ an inner product in a Hilbert space?

 $K(\mathbf{u}, \mathbf{v}) = \sum_{n} \boldsymbol{I}_{n} \overline{\boldsymbol{f}}_{n}(\mathbf{u}) \boldsymbol{f}_{n}(\mathbf{v})$ with positive coefficients \boldsymbol{I}_{n} if for any $g(\mathbf{u}) \in L_{2}$ $\int K(\mathbf{u}, \mathbf{v}) g(\mathbf{u}) \overline{g}(\mathbf{v}) d\mathbf{u} d\mathbf{v} \ge 0$ Mercer's condition

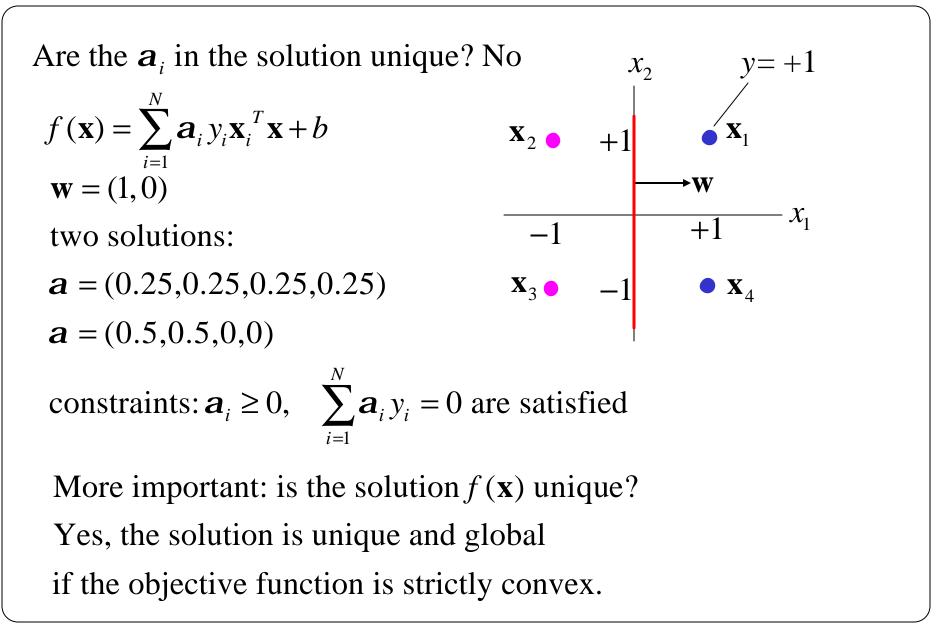
Some examples of commonly used kernels:

Linear kernel: $\mathbf{u}^T \mathbf{v}$ Polynomial kernel: $(1 + \mathbf{u}^T \mathbf{v})^d$ Gaussian kernel (RBF): $\exp(-\|\mathbf{u} - \mathbf{v}\|^2)$, shift invar.MLP: $\tanh(\mathbf{u}^T \mathbf{v} - \mathbf{q})$

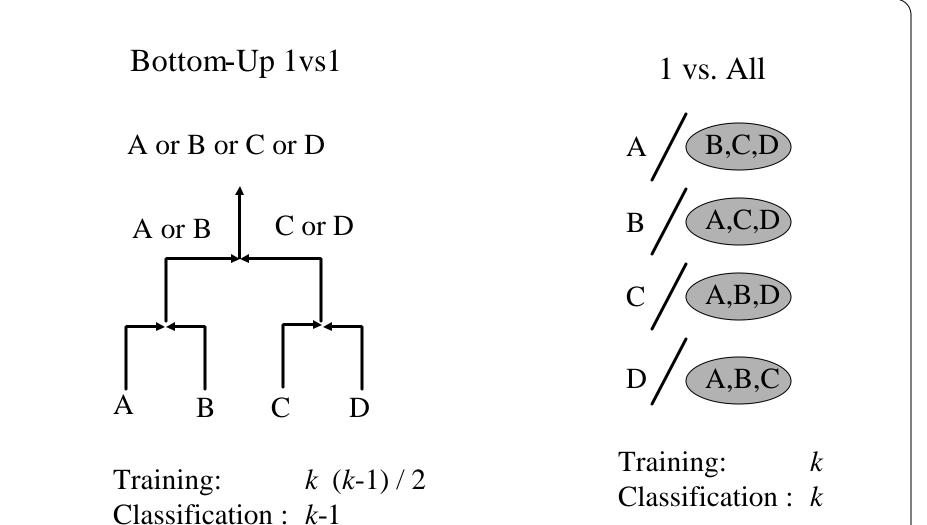
Polynomial second degree kernel $K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^T \mathbf{v})^2, \quad \mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ $= 1 + (u_1v_1)^2 + (u_2v_2)^2 + 2u_1v_1u_2v_2 + u_1v_1 + u_2v_2$ $=(1, u_1^2, u_2^2, \sqrt{2}u_1u_2, u_1, u_2)(1, v_1^2, v_2^2, \sqrt{2}v_1v_2, v_1, v_2)^T$ $\Phi(\mathbf{x}) = (1, x_1^2, x_2^2, \sqrt{2}x_1x_2, x_1, x_2)^T$ Shift invariant kernel $K(\mathbf{u}, \mathbf{v}) = K(\mathbf{u} - \mathbf{v})$ defined on $L^2([0,T]^d)$ can be written as the Fourier series of K:

$$f(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \mathbf{I}_{k} \ e^{\frac{j2\mathbf{p}kt}{T}}, f(t-t_{0}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \mathbf{I}_{k} \ e^{\frac{j2\mathbf{p}kt}{T}} e^{-\frac{j2\mathbf{p}kt_{0}}{T}}$$
$$K(\mathbf{u} - \mathbf{v}) = \sum_{k=0}^{\infty} \mathbf{I}_{k} \ e^{j2\mathbf{p}\mathbf{k}_{k}\mathbf{u}} e^{-j2\mathbf{p}\mathbf{k}_{k}\mathbf{v}} \ \forall \mathbf{k}_{k} \in Z([-\infty, \infty]^{d})$$

SVM—Uniqueness



SVM—Multiclass



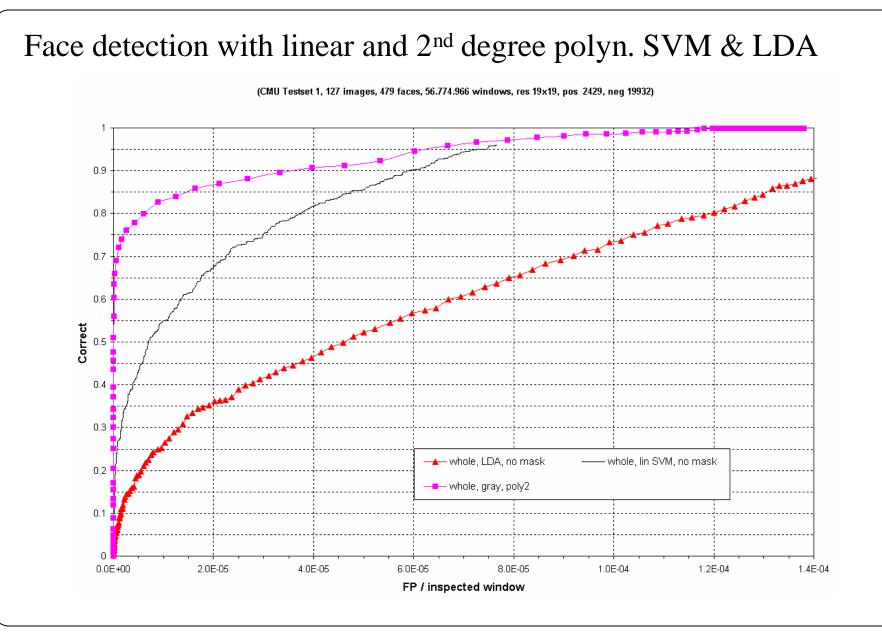
How to choose the kernel?

Linear SVMs are simple to compute, fast at runtime but often not sufficient for complex tasks.

SVM with Gaussian kernels showed excellent performance in many applications (after some tuning of sigma). Slow at run-time.

Polynomial with 2nd are commonly used in computer vision applications. Good trade off between classification performance computational complexity.

SVM—Example



How to choose the *C*-value?

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \mathbf{x}_i$$

C-value penalizes points within the margin.

Large *C*-value can lead to poor generalization performance (over-fitting). From own experience in **object detection** tasks: Find a kernel and *C*-values which give you zero errors on the training set. In computer vision applications fast classification is usually more important than fast training.

Two ways of computing the decision function $f(\mathbf{x})$:

a) $\mathbf{w}^T \Phi(\mathbf{x}) + b$ b) $\sum_{i=1}^N \mathbf{a}_i y_i K(\mathbf{x}, \mathbf{x}_i) + b$ Which one is faster?

-For a linear kernel a)

-For a polynomial 2nd degree kernel: Multiplications for a): $G_{\Phi,poly2} = (n+2)n$, where *n* is dim. of **x** Multiplications for b): $G_{K,poly2} = (n+2)s$, where *s* is nb. of sv's -Gaussian kernel: only b) since dim. of $\Phi(\mathbf{x})$ is ∞ . From a given set of training examples $\{\mathbf{x}_i, y_i\}$ learn the mapping $\mathbf{x} \to y$. The learning machine is defined by a set of possible mappings $\mathbf{x} \to f(\mathbf{x}, \mathbf{a})$ where \mathbf{a} is the adjustable parameter of f.

The goal is to minimize the expected risk R:

$$R(\boldsymbol{a}) = \int V(f(\mathbf{x}, \boldsymbol{a}), y) \, dP(\mathbf{x}, y)$$

V is the loss function

P is the probability distribution function

We can't compute $R(\mathbf{a})$ since we don't know $P(\mathbf{x}, y)$

To solve the problem minimize the "empirical risk" R_{emp} over the training set :

$$R_{emp}(\boldsymbol{a}) = \frac{1}{N} \sum_{i=1}^{N} V(f(\mathbf{x}_i, \boldsymbol{a}), y_i)$$

V is the loss function

Common loss functions:

 $V(f(\mathbf{x}), y) = (y - f(\mathbf{x}))^{2} \text{ least squares}$ $V(f(\mathbf{x}), y) = (1 - yf(\mathbf{x}))_{+} \text{ hinge loss where } (x)_{+} \equiv \max(x, 0)$ $1 \qquad 1 \qquad 1 \qquad yf(\mathbf{x})$

Bound on the expected risk:

For a loss function with $0 \le V(f(\mathbf{x}), y) \le 1$ with probability

1-h, $0 \le h \le 1$ the following bound holds:

$$R(\boldsymbol{a}) \le R_{emp}(\boldsymbol{a}) + \sqrt{\frac{h\ln(2N/h) + h - \ln(h/4)}{N}}$$

Bound is independent of the

 $R_{emp}(\boldsymbol{a})$ empirical risk

N number of training examples

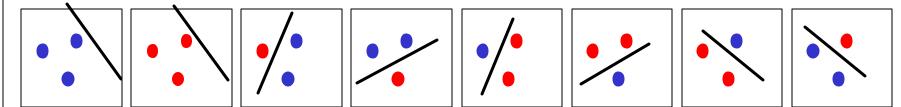
h Vapnik Chervonenkis (VC) dimension

Keep all parameters in the bound fixed except one: (1-h) \uparrow bound \uparrow , $N \uparrow$ bound \downarrow , $h \uparrow$ bound \uparrow

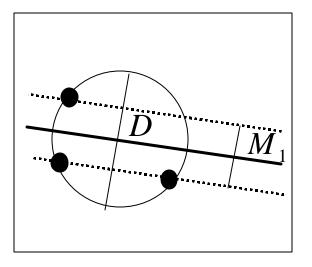
probablility distribution $P(\mathbf{x}, y)$

The VC dimension is a property of the set of functions $\{f(a)\}$. If for a set of *N* points labeled in all 2^N possible ways one can find an $f \in \{f(a)\}$ which separates the points correctly one says that the set of points is shattered by $\{f(a)\}$. The VC dimension is the maximum number of points that can be shattered by $\{f(a)\}$.

The VC dimension of a functions $f : \mathbf{w}^T \mathbf{x} + b = 0$ in 2 dim:



Learning Theory—SVM



The expected risk E(R) for the optimal hyperplanes: $E(R) \le \frac{E(D^2 / M^2)}{N}$

where the expectation is over all training sets of size N.

'Algorithms that maximize the margin have better generalization performance.'

Bounds

Most bounds on expected risk are very loose to compute instead:

Cross Validation Error

Error on a cross validation set which is different from the training set.

Leave-one-out Error

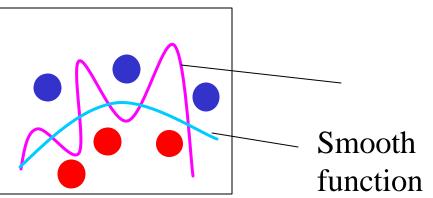
Leave one training example out of the training set, train classifier and test on the example which was left out. Do this for all examples. For SVMs upper bounded by the # of support vectors. Given N examples $(\mathbf{x}_i, y_i), \mathbf{x} \in \mathbf{R}^n, y \in \{0,1\}$ solve:

$$\min_{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} V(f(\mathbf{x}_{i}), y_{i}) + \boldsymbol{g} \| f \|_{K}^{2}$$

where $||f||_{K}^{2}$ is the norm in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} , with the reproducing kernel K, g is the regularization parameter.

 $\boldsymbol{g} \| f \|_{K}^{2}$ can be interpreted as a smoothness constraint. Under rather general conditions the solution can be written as:

$$f(\mathbf{x}) = \sum_{i=1}^{N} c_i K(\mathbf{x}, \mathbf{x}_i)$$



Regularization—Reproducing Kernel Hilbert Space (RKHS)

Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}

$$f(\mathbf{x}) = \left\langle \overline{K}(\mathbf{x}, \mathbf{y}), f(\mathbf{y}) \right\rangle_{\mathcal{H}}$$

Positive numbers I_n and orthonormal set of

functions $f_n(\mathbf{x})$, $\int \overline{f}_n(\mathbf{x}) f_m(\mathbf{x}) d\mathbf{x} = 0$ for $n \neq m$, and 1 otherwise : $K(\mathbf{x}, \mathbf{y}) \equiv \sum_n I_n \overline{f}_n(\mathbf{x}) f_n(\mathbf{y})$, I_n are nonnegative eigenvalues of K

$$f(\mathbf{x}) = \sum_{n} a_{n} \mathbf{f}_{n}(\mathbf{x}), \quad a_{n} = \int f(\mathbf{x}) \overline{\mathbf{f}}_{n}(\mathbf{x}) d\mathbf{x},$$

$$\left\langle f(\mathbf{x}), f(\mathbf{y}) \right\rangle_{\mathcal{H}} \equiv \sum_{n} \frac{a_{n}}{\sqrt{I_{n}}} \frac{b_{n}}{\sqrt{I_{n}}}$$
$$\left\| f(\mathbf{x}) \right\|_{\mathcal{H}} = \left\langle f(\mathbf{x}), f(\mathbf{x}) \right\rangle_{\mathcal{H}} = \sum_{n} a_{n}^{2} / I_{n}$$

Regularization—Simple Example of RKHS

Kernel is a one dimensional Gaussian with s=1: $K(x, y) = \exp(-(x - y)^2), x, y \text{ in } [0,1]$ write K(x, y) as Fourier expansion using shift theorem: $K(x, y) = \sum I_n \exp(j2pnx) \exp(-j2pny)$ Period T = 1where I_n are the Fourier coeff. of $exp(-x^2)$ $\boldsymbol{I}_n = A \exp(-n^2/2)$ I_n decreases with higher frequencies (increasing *n*). This is a property of most kernels. The regularization term: $\|f(x)\|_{\mathcal{H}} = \sum a_n^2 / I_n$, where a_n are the Fourier coeff. of f(x)penalizes high freq. more than low freq. \rightarrow smoothness!

For the hinge loss function $V(f(\mathbf{x}), y) = (1 - yf(\mathbf{x}))_+$ it can be shown that the regularization problem is equivalent to the SVM problem:

$$\begin{split} \min_{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} (1 - y_i f(\mathbf{x}_i))_+ + \mathbf{I} \| f \|_{K}^2 \\ \text{introducing slack variables } \mathbf{x}_i &= 1 - y_i f(\mathbf{x}_i) \text{ we can rewrite:} \\ \min_{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i + \mathbf{I} \| f \|_{K}^2 \text{ , subject to: } y_i f(\mathbf{x}_i) \geq 1 - \mathbf{x}_i \text{ , and } \mathbf{x}_i \geq 0 \forall i \\ \text{It can be shown that this is equivalent to the SVM problem (up to b)} \\ \text{SVM:} \quad \min_{\mathbf{w}, b} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{N} \mathbf{x}_i \qquad C = 1/(2\mathbf{I}N) \\ \text{subject to: } y_i(\mathbf{x}_i^T \mathbf{w} + b) \geq 1 - \mathbf{x}_i, \quad \mathbf{x}_i \geq 0 \forall i \end{split}$$

- SVMs are maximum margin classifiers.
- Only training points close to the boundary (support vectors) occur in the SVM solution.
- The SVM problem is convex, the solution is global and unique.
- SVMs can handle non-separable data.
- Non-linear separation in the input space is possible by projecting the data into a feature space.
- All calculations can be done in the input space (kernel trick).
- SVMs are known to perform well in high dimensional problems with few examples.
- Depending on the kernel, SVMs can be slow during classification
- SVMs are binary classifiers. Not efficient for problems with large number of classes.

Literature

T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer, 2001: *LDA, QDA, extensions to LDA, SVM & Regularization.*

C. Burges: A Tutorial on SVM for Pattern Recognition, 1999: *Learning Theory, SVM*.

R. Rifkin: Everything Old is New again: A freshLook at Historical Approaches in Machine Learning,2002: SVM training, SVM multiclass.

T. Evgeniou, M. Pontil, T. Poggio: Regularization Networks and SVMs, 1999: *SVM & Regularization*.

V. Vapnik: The Nature of Statistical Learning, 1995: *Statistical learning theory, SVM.*

Classification problem on the NIST handwritten digits data involving PCA, LDA and SVMs.

PCA code will be posted today