Solutions.
Problem 1.
a) For first-order reaction kinetics

$$
\mathrm{X}_{\mathrm{A}}=\frac{\mathrm{Da}}{1+\mathrm{Da}}=\frac{\mathrm{k} \tau}{1+\mathrm{k} \tau}=\frac{2.5 \times 10^{-3} \mathrm{~min}^{-1} \times \frac{10000 L}{0.3 L / \mathrm{sec}}}{1+2.5 \times 10^{-3} \mathrm{~min}^{-1} \times \frac{10000 \mathrm{~L}}{0.3 L / \mathrm{sec}}}=0.58
$$

b) Consider the non-steady state design equation for CSTR, where we can have

$$
\mathrm{F}_{\mathrm{A} 0}-\mathrm{F}_{\mathrm{A}}+\mathrm{r}_{\mathrm{A}} V=\frac{\mathrm{dN}_{\mathrm{A}}}{\mathrm{dt}}
$$

Since in liquid phase with constant density, we have

$$
\mathrm{C}_{\mathrm{A} 0}-\mathrm{C}_{\mathrm{A}}-\mathrm{kC}_{\mathrm{A}} \tau=\tau \frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}
$$

or equivalently

$$
\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}+\frac{1+\mathrm{k} \tau}{\tau} \mathrm{C}_{\mathrm{A}}=\frac{\mathrm{C}_{\mathrm{A} 0}}{\tau}
$$

with the initial conditions $\mathrm{C}_{\mathrm{A}, \mathrm{t}=0}=(1-0.58) \times 0.12 \mathrm{~mol} / \mathrm{L}=0.05 \mathrm{~mol} / \mathrm{L}$, new $\tau=10000 \mathrm{~L} /(0.7 \times 0.3 * 60$ $\mathrm{L} / \mathrm{min}$) $=793.7 \mathrm{~min}$
Therefore, integrate this equation we can have

$$
\mathrm{C}_{\mathrm{A}}(t)=\frac{\mathrm{C}_{\mathrm{A} 0}}{1+\mathrm{k} \tau}\left\{1-\exp \left[-\frac{1+\mathrm{k} \tau}{\tau} t\right]\right\}+\mathrm{C}_{\mathrm{A}, \mathrm{t}=0} \exp \left(-\frac{1+\mathrm{k} \tau}{\tau} t\right)
$$

Therefore the conversion at time t is

$$
\mathrm{X}_{\mathrm{A}}(t)=1-\frac{1}{1+\mathrm{k} \tau}\left\{1-\exp \left[-\frac{1+\mathrm{k} \tau}{\tau} t\right]\right\}-\frac{\mathrm{C}_{\mathrm{A}, \mathrm{t}=0}}{\mathrm{C}_{\mathrm{A} 0}} \exp \left[-\frac{1+\mathrm{k} \tau}{\tau} t\right]
$$

After 60 min of changing flow rate,

$$
\mathrm{X}_{\mathrm{A}}(60 \min)=1-\frac{1}{1+\mathrm{k} \tau}\left\{1-\exp \left[-\frac{1+\mathrm{k} \tau}{\tau} t\right]\right\}-\frac{\mathrm{C}_{\mathrm{A}, \mathrm{t}=0}}{\mathrm{C}_{\mathrm{A} 0}} \exp \left[-\frac{1+\mathrm{k} \tau}{\tau} t\right]=0.598
$$

The new steady state fractional conversion is

$$
\mathrm{X}_{\mathrm{A}}=\frac{\mathrm{Da}}{1+\mathrm{Da}}=\frac{\mathrm{k} \tau}{1+\mathrm{k} \tau}=\frac{2.5 \times 10^{-3} \mathrm{~min}^{-1} \times \frac{10000 L}{0.3 L / \sec \times 0.7}}{1+2.5 \times 10^{-3} \mathrm{~min}^{-1} \times \frac{10000 L}{0.3 L / \sec \times 0.7}}=0.665
$$

c) The steady state productivity (moles/time) of B is F_{B}, and the ratio of that in b) vs. that in a) is

$$
\frac{\mathrm{F}_{\mathrm{B}, \mathrm{~b}}}{\mathrm{~F}_{\mathrm{B}, \mathrm{a}}}=\frac{0.3 \mathrm{~L} / \sec \times 0.7 \times 0.665}{0.3 \mathrm{~L} / \sec \times 0.58}=0.803
$$

Therefore, the productivity will be decreased by lowering the flow rate even though a higher conversion is to be achieved.

Problem 2.

We know for first order reaction, conversion X_{A} has the following relation with rate constant k , CSTR reactor volume V and volumetric flow rate v

$$
X_{A}=\frac{\mathrm{k} \frac{\mathrm{~V}}{\mathrm{v}}}{1+\mathrm{k} \frac{\mathrm{~V}}{\mathrm{~V}}}
$$

When we have a dead volume (denoted as subscript 1) which does not interact with the input and output streams, we can deduce this amount of volume from the overall reactor volume.

$$
X_{A 1}=\frac{\mathrm{k} \frac{\mathrm{~V}_{1}}{\mathrm{~V}}}{1+\mathrm{k} \frac{\mathrm{~V}_{1}}{\mathrm{v}}}
$$

We are told $\mathrm{V}_{1}=600 \mathrm{~L}-400 \mathrm{~L}=200 \mathrm{~L}, \quad \mathrm{X}_{\mathrm{A} 1}=0.75$, therefore we can calculate $\frac{\mathrm{k}}{\mathrm{V}}=\frac{\mathrm{X}_{\mathrm{A} 1}}{\mathrm{~V}_{1}\left(1-\mathrm{X}_{\mathrm{A} 1}\right)}=0.015$.

Then for the well-stirred reactor, $\mathrm{V}=600 \mathrm{~L}$

$$
X_{A}=\frac{\mathrm{k} \frac{\mathrm{~V}}{\mathrm{v}}}{1+\mathrm{k} \frac{\mathrm{~V}}{\mathrm{v}}}=0.9
$$

Problem 3.
For a PFR reactor, the design equation is

$$
\frac{\mathrm{dX}}{\text { celluose }} \text { dz}=S \frac{-\mathrm{r}_{\text {celluose }}}{\mathrm{F}_{\text {celluose, in }}}
$$

Now $S=10 \mathrm{~cm}^{2}$, length $=2 \mathrm{~m}, \mathrm{~F}_{\text {celluose, in }}=\mathrm{V}_{\text {in }}[\text { cellulose }]_{\text {in }}$, in order to know v , we have to convert 60 grams of slurry into total moles of cellulose and water per second, that is

$$
\begin{aligned}
& \dot{\mathrm{n}}_{\text {total, in }}=\frac{60 \mathrm{gram} / \mathrm{sec} \times 20 \%}{\mathrm{MW}_{\text {cellulose }}}+\frac{60 \mathrm{gram} / \mathrm{sec} \times(1-20 \%)}{\mathrm{MW}_{\text {water }}}= \\
& =\frac{60 \mathrm{gram} / \mathrm{sec} \times 20 \%}{720 \mathrm{gram} / \mathrm{mol}}+\frac{60 \mathrm{gram} / \mathrm{sec} \times(1-20 \%)}{18 \mathrm{gram} / \mathrm{mol}}=2.683 \mathrm{~mol} / \mathrm{sec}
\end{aligned}
$$

Using ideal gas law to get the volumetric flow rate:

$$
\mathrm{v}_{\text {in }}=\frac{\dot{\mathrm{n}}_{\text {total, in }} \mathrm{RT}}{\mathrm{P}}=\frac{2.683 \mathrm{~mol} / \mathrm{sec} \times 8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \times 600 \mathrm{~K}}{20 \mathrm{~atm}}=6.61 \mathrm{liter} / \mathrm{sec}
$$

Also
${\text { [cellulose }]_{\text {in }}}=\frac{\mathrm{y}_{\text {cellulose }, 0} \mathrm{P}}{\mathrm{RT}}=\frac{\frac{20 \%}{720 \mathrm{gram} / \mathrm{mol}}}{\left(\frac{20 \%}{720 \mathrm{gram} / \mathrm{mol}}+\frac{1-20 \%}{18 \mathrm{gram} / \mathrm{mol}}\right)} \frac{20 \mathrm{~atm}}{8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \times 600 \mathrm{~K}}=2.52 \mathrm{~mol} / \mathrm{m}^{3}$
where $y_{\text {cellulose }, 0}$ is the molar fraction of cellulose in the inlet.
In this problem, since the gas phase reaction creates more molecules, the volumetric flow rate is not a constant.

$$
-\mathrm{r}_{\text {celluose }}=\mathrm{k} \frac{[\text { cellulose }]}{1+\mathrm{a}[\mathrm{CO}]}
$$

where the concentrations should be expressed (constant pressure and temperature are assumed)

$$
[\text { cellulose }]=[\text { cellulose }]_{\text {in }} \frac{(1-\mathrm{X})}{(1+\varepsilon \mathrm{X})}
$$

and

$$
[\mathrm{CO}]=\left[\mathrm{H}_{2}\right]=[\text { cellulose }]_{\mathrm{in}} \frac{24 \mathrm{X}}{(1+\varepsilon \mathrm{X})}
$$

Here $\varepsilon=(24+24-1) \mathrm{y}_{\text {cellulose }, 0}=47 * 0.0062=0.292$.
Now the final molar flow rate of H_{2} is
$\mathrm{v}_{\text {final }}\left[\mathrm{H}_{2}\right]=24 \mathrm{v}_{\text {in }}[\text { cellulose }]_{\text {in }} \mathrm{X}_{\mathrm{f}}$

