10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup Lecture 9: Reactor Size Comparisons for PFR and CSTR

This lecture covers reactors in series and in parallel, and how the choice of reactor affects selectivity versus conversion.

PFR vs. CSTR: Size and Selectivity

Material balance:

$$\mathbf{V} = \frac{F_{Ao}}{-r_A} X_A$$

CSTR

PFR

$$\mathbf{V} = \int_0^{X_A} \frac{F_{Ao}}{-r_A} dX$$

Figure 2. Levenspiel plots for a CSTR and a PFR for positive order reactions.

So PFR is always a smaller reactor for a given conversion when kinetics are positive order.

Non-monotonically positive order kinetics arise:

- Autocatalytic reactions (e.g. cell growth)
- Adiabatic or non-isothermal exothermic reactions
- Product inhibited reactions (some enzymes)

Series of Reactors

Example: 2 CSTRs

$$\mathbf{V}_1 = \frac{\mathbf{r}_{Ao}}{-\mathbf{r}_{A_1}} \mathbf{X}_1$$

 2^{nd} reactor: 0 In + Out + Prod = Aec

$$F_{A_1} - F_{A_2} + r_{A_2} \operatorname{V}_2 =$$
 Steady state

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup Lecture 9 Page 2 of 6

Figure 5. Reactor volumes for multiple CSTRs in series.

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup

Lecture 9 Page 3 of 6

Figure 6. Levenspiel plots comparing CSTR and PFR volumes for changing kinetics. Left: The CSTR has the smaller volume. Right: The PFR eventually has the smaller volume.

Choice of PFR vs CSTR depends on conversion. Choose the reactor that has the smallest volume \rightarrow reduce cost.

Figure 7. To achieve the desired conversion with smaller reactor volumes, use a combination. In this case, use a CSTR then a PFR. By doing so, the reactor volume is less than the area underneath the curve.

For competing parallel reactions, selectivity for desired product can dominate the choice.

<u>Example</u>	$A \rightarrow D$	$r_D = k_d C_A^{\alpha_1}$	D = Desired, U = Undesired
	$A \rightarrow U$	$r_U = k_u C_A^{\alpha_2}$	

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup

Lecture 9 Page 4 of 6

Define "selectivity" $S_{D/U} = \frac{r_D}{r_U} = \frac{k_d}{k_u} C_A^{(\alpha_1 - \alpha_2)}$

If $\alpha_{\rm l} > \alpha_{\rm 2}$, as $\, C_{\scriptscriptstyle A} \,$ increases, $\, S_{\scriptscriptstyle D/U} \,$ increases

-Favors PFR because C_A starts at C_{Ao} then drops whereas CSTR concentrations are always at lower C_A .

- If $\alpha_{\rm l} < \alpha_{\rm 2}$, as $\,C_{\scriptscriptstyle A}\,$ increases, $\,S_{\scriptscriptstyle D/U}\,$ decreases -CSTR favored
- If $\alpha_1 = \alpha_2$ then $S_{D/U} = \frac{k_d}{k_u}$, no dependence on C_A -Therefore no CSTR/PFR preference.

Define a fractional yield

$$\phi = \frac{dC_D}{-dC_A} = \frac{k_d C_A^{\alpha_1}}{k_d C_A^{\alpha_1} + k_u C_A^{\alpha_2}}$$

Overall fractional yield $\Phi = \frac{\text{All } D \text{ produced}}{\text{All } A \text{ consumed}}$

For a CSTR:
$$\Phi = \phi |_{\text{Exit } C_A}$$

 $\Delta C_A = C_{A_0} - C_{A_f}$
For a PFR: $\Phi = \frac{1}{\Delta C_A} \int_{C_{A_0}}^{C_{A_f}} \phi dC_A$

Figure 8. Fractional yield versus concentration. Selectivity does not depend on C_A.

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup Lecture 9 Page 5 of 6

Figure 10. Comparison of overall fractional yield for a CSTR and a PFR when $\alpha_1 > \alpha_2$.

PFR is preferred because $\Phi_{\rm PFR}{>}\Phi_{\rm CSTR}$, therefore the yield of D per mol A consumed is higher.

If $\alpha_1 < \alpha_2$

$$\Phi_{\rm PFR} < \Phi_{\rm CSTR}$$

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup Lecture 9 Page 6 of 6