10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. William H. Green Lecture 17: Mass Transfer Resistances

This lecture covers: External diffusion effects, non-porous packed beds and monoliths, and immobilized cells

 Table 1. Homogeneous vs. Heterogeneous Catalysis

Homogeneous	VS.	Heterogeneous Catalysis
acids,bases		immobilized enzymes
radicals		metals
organometallics		solid acids, bases
enzymes		metal oxides, zeolites, clays, silica
better mixing, uniformity		multiphase systems
transport limitations		reuse catalyst easily
		product purity

- 1. New rate law on surface
- 2. Model the transport and mixing

$$C_{i(x,y,z)}^{fluid} = \frac{N_i}{Volume}$$

$$\theta_{j(x,y)}^{surface} = \frac{N_j \text{ on surface}}{N \text{ sites on surface}}$$

$$\sum \theta_j + \theta_{vacancy} = 1$$

$$r_i^{fluid} = \sum_{n=1}^{N_{rm}, fluid} v_{i,n} r_n(\underline{C}) + \left(\frac{A}{V}\right) \sum_{m=1}^{N_{rm}, suface} v_{i,m} r_m^{"}(\underline{C}, \underline{\theta})$$

$$\frac{1}{\frac{mol}{s \cdot vol}} \frac{1}{\frac{mol}{s \cdot area}}$$

Figure 1. Schematic of boundary layer at catalyst surface for a turbulent, well mixed system where C_A is a function of x.

Cite as: William Green, Jr., course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Flux of A to the surface: $W_A = -C_{tot}D\nabla y_A + y_A(W_A + W_P)$ where y_A is the mole fraction of A $C_{tot} = const$ diffusion convection $W_{A} = \overbrace{-D\nabla C_{A}}^{} + \overbrace{C_{A}\underline{u}}^{}$ $F_A^{net} = - \oint W_A \cdot dn$ \leftarrow surface integral $F_A = \iiint dx dy dz \overline{\nabla} \cdot W_A$ $\frac{dN_A}{dt} = \iiint dx dy dz \left(\pm \overline{\nabla} \underline{W}_A + r_A(x, y, z) \right)$ $\frac{dC_A}{dt} = \overrightarrow{\nabla} \cdot \underline{W}_A + r_A$ *See Fogler 11-21 Continuity equation: $\left| \frac{dC_A}{dt} = D\nabla^2 C_A - \underline{u} \cdot \nabla C_A + r_A(\underline{C}) \right|$ Boundary Condition: $W_A^{\text{into wall}} = -r_A^{"}$ at surface 1. Steady state 2. Gradients $\frac{dC_A}{dx}$ and $\frac{dC_A}{dy}$ are negligible Velocity u towards the wall = 0 4. No reaction in the fluid $0 = D \frac{\partial^2 C_A}{\partial z^2}$ $W_{A} = -r_{A}^{"}$ $-D\frac{dC_A}{dz} = -r_A^{"}(\underline{C}_{z=0})$ (z=0 at the surface) $C_A(z) = C_A(z=0) + \left[\frac{C_A^{main} - C_A(z=0)}{\delta}z\right]$ $D\frac{dC_A}{dz} = D\frac{C_A^{main} - C_A(z=0)}{\delta} = -r_A^* (C_{A,z=0})$ Slow chemistry limit: $C_A(z=0) \approx C_A^{main}$ $r_{A}^{"} \approx r_{A}^{"} \left(C_{A}^{main} \right)$ Fast chemistry limit: $C_A(z=0) \approx 0$ $\frac{D}{s}C_A^{main} \approx r_A^{"}$

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. William H. Green

Lecture 17 Page 2 of 3

Cite as: William Green, Jr., course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

 $\frac{D}{\delta} = k_c \text{ "mass transfer coefficient"}$ $Sh = \frac{k_c d_p}{D} \text{ (dimensionless)}$ For otherical, catalyst particle with diameter d.

For spherical, catalyst particle with diameter d_p : $Sh = 2 + 0.6 \operatorname{Re}^{1/2} \operatorname{Sc}^{1/3}$

$$Sc = \frac{\upsilon}{D}$$
 Re $= \frac{ud_p}{\upsilon}$ $\upsilon = \frac{\mu}{\rho}$

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. William H. Green Lecture 17 Page 3 of 3

Cite as: William Green, Jr., course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].