10.37 Chemical and Biological Reaction Engineering, Spring 2007

Prof. William H. Green

Lecture 21: Reaction and Diffusion in Porous Catalyst (cont'd)

This lecture covers: Packed bed reactors

Figure 1. Packed Bed Reactor

Void Fraction $\phi \sim .5$
$C_{A}\left(x_{j}, y_{m}, z_{l}\right)$
$j=1,30$
$m=1,30$
$\underbrace{l=1,30}_{\text {(points) }}$

$$
\begin{array}{ll}
D_{i} \nabla^{2} C_{i}-\underline{U} \cdot \nabla C_{i}+r_{i}^{\text {fluid }}=0 & \leftarrow \text { in the fluid } \quad \mathrm{i}=1, N_{\text {species }}{ }^{\text {fluid }} \tag{11-21}\\
\left.D_{i} \frac{\partial C_{i}}{\partial \hat{n}}\right|_{\text {surface }}+r_{i}^{\text {surface }}=0 & \text { (boundary condition for the above) }
\end{array}
$$

Ergun's Eq.:

$$
\begin{equation*}
\frac{d P}{d z}=-\frac{G}{\rho g_{c} D_{p}} \frac{1-\phi}{\phi^{3}}\left[\frac{150(1-\phi) \mu}{D_{p}}+1.75 G\right] \tag{4-22}
\end{equation*}
$$

where $P=\rho R T, \rho U_{z}=\frac{G}{A}$

$$
\Omega \equiv \frac{\text { Actual rate of reaction }\left(r_{A}^{\text {eff }}\right)}{\text { Rate if } C_{A}=C_{A_{\text {bulk }}}(z) \text {, and } T=T_{\text {bulk }} \text { everywhere }}
$$

$$
\begin{aligned}
\frac{\partial F_{i}}{\partial z}=A r_{i}^{\text {eff }} & =A \Omega r_{i}^{\text {ideal }} \quad r_{i}^{\text {ideal }}[=] \frac{\mathrm{mol}}{\mathrm{vol} . \mathrm{s}} \\
r_{i}^{\text {ideal }} & =r_{i}^{\prime}\left(\frac{\text { wt. of catalyst in reactor }}{\mathrm{V} \text { reactor }}\right) \\
r_{i} & =r_{i}^{\prime} \rho_{c}(1-\phi) \\
& =r_{i}^{\prime \prime}\left(\frac{\text { surface area of cat. }}{\mathrm{wt.} \mathrm{cat.}}\right) \rho_{c}(1-\phi)
\end{aligned}
$$

$$
a_{c} / m_{\text {particle }}
$$

$$
\frac{m^{2}}{g}[=] S_{a}+(\text { macroscopic surface area, visual })
$$

$$
F_{A}=v C_{A}=A U C_{A} \quad \text { (some approximation) }
$$

$$
\frac{1}{A} \frac{d F_{A}}{d z}=+U \frac{d C_{A}}{d z}-\underbrace{D_{a}}_{\text {hope this is 0! }} \frac{d^{2} \mathscr{C}_{A}^{2}}{d i s p e r s i o n}
$$

Figure 2. Flow over a sphere

$$
\begin{aligned}
& k_{c} a_{c}\left(C_{A_{b}}-C_{A s}\right)=\eta\left(C_{A s}\right) r_{A}^{\text {particle }}\left(C_{A s}\right) V_{p} \\
& D_{\text {inside }} \frac{\partial^{2} C_{A}}{\partial r^{2}}+r_{A}\left(C_{A}(r)\right)=0 \\
& \left.\quad \frac{\partial C_{A}}{\partial r}\right|_{r=0}=0 \quad D_{\text {eff inside }} \frac{\partial C_{A}}{\partial r}=k_{c}\left(C_{A_{b}}-C_{A s}\right) \\
& \left.k_{c} C_{A}\right|_{r=R}+\left.D_{\text {eff inside }} \frac{\partial C_{A}}{\partial r}\right|_{r=R}=k_{c} C_{A \text { bulk }}
\end{aligned}
$$

Matlab:

1) Guess $C_{A s}$ (C_{A} surface)
2) Use boundary conditions to get corresponding $\left.\frac{\partial C_{A}}{\partial r}\right|_{r=R}$
3) Solve ODE (ode15s)
4) Vary guess ($C_{A s}$) to make $\frac{\partial C_{A}}{\partial r}=0$ at center
$1^{\text {st }}$ oder irrev.

$$
\begin{array}{cc}
\Omega=\frac{\eta}{1+\frac{\eta k_{1}^{\prime \prime} S_{a} \rho_{b}}{k_{c} a_{c}}} & \eta=\frac{3}{\phi_{1}^{2}}\left(\phi_{1} \operatorname{coth}\left(\phi_{i}\right)-1\right) \\
& \phi_{1}=\ldots \sqrt{k_{1}^{\prime \prime}}
\end{array}
$$

