SOLID LIQUID SEPARATION: CENTRIFUGATION

CHARLES L. COONEY DOWNSTREAM PROCESSING COURSE

MIT Professional Institute

August 1-5, 2005

Figure by MIT OCW.

Centrifugation is Effective in Volume Reduction

Characteristics of process streams in primary recovery

Volume at or near process maximum
Heterogeneous solid/liquid mixture
Particle size distribution

•Typical particle sizes:

•Bacteria 1 to 2	μ
•Yeast	3 to 5 μ
 Actinomyces 	2 to 30 μ
•Molds	4 to >30 μ
 Microbial flocs 	10 to >100 μ
•Cell debris <1 μ	
 Solids content: 	1-10% dry basis
	5-50% wet basis

- •Time variable product and stream quality
- •Viscosity: 1 to >5,000 cp
- •Temperature: 4-40 C
- Mechanically (shear) sensitive materials
- •Temperature and pH sensitive materials
- Potentially toxic materials

Centrifuge Equipment Process Needs

- •Cleaning in place (CIP)
- •Steam in place (SIP)
- Automation for start-up and operation
- Short process times
- •Flexibility in process stream properties
- Temperature control
- •Containment to prevent entry of contaminants <u>and</u> release of solvents or toxic materials
- Corrosion resistance
- Small footprint
- •Fail safe system in case of off-balance
- Continuous operation for long times
- Interface with upstream and downstream operations

OPERATING REGION FOR SOLID/LIQUID SEPARATION AND SOLUTE CONCENTRATION

STOKE'S LAW CALCULATION OF CENTRIFUGE THROUGHPUT, Q

Q= Volumetric throughput (cm³/s) Vs=Sedimentation velocity (cm/s) dp=particle diameter (cm) ρ p=particle density (g/cm³) ρ s=solvent density (g/cm³) μ =solvent viscosity (g/cm-s) gc=gravitational constant (cm/s²)

Implications of Stoke's Law

Causes for deviation

- Non-spherical particles
- Non-Newtonian rheology
- Hindered settling
- Non-uniform flow

Opportunities to improve

- Increase particle size
- Increase density difference
- Reduce viscosity
- Increase gravitational force

Continuous Separation in a Tank

Figure by MIT OCW.

A = Surface area

V = Volume

Q = Throughput – independent of height & proportional to area

 V_{lim} = Sedimentation velocity T = Time

$$t = \frac{V}{Q} = \frac{bhl}{Q}$$

$$t = \frac{h}{g_{\lim}}$$

$$A = bl$$

$$\Rightarrow Q = g_{\lim}A$$

Comparison of Sedimentation in a Tank and Centrifuge

Increase **AREA** to increase **Q**

Feed Feffluent Feifluent Sediment

Figure by MIT OCW.

Figure by MIT OCW.

Centrifugal Coefficient & Stoke's Law

- C = centrifugal coefficient
- R radius of rotor
- W = angular velocity
- **D** = rotor diameter
- N = rotor speed
- V = settling rate
- **D** = particle diameter
- S = particle density
- S1 = medium density
- N = medium viscosity
- g = gravitational constant

Sedimentation Velocity $Q = V_{lim}A$ Tank $v_{\text{lim}} = \frac{d_{\text{lim}}^2 \Delta \rho g}{18 \mu}$ **Disc-Stack Separator** $v_{\text{lim}} = \frac{d_{\text{lim}}^2 \Delta \rho}{18 \mu} r \omega^2$

What is different? $r\omega^2$

AREA

 $Q = V_{lim}A$

$dA = N2\pi r (\cot a) dr$

Figure by MIT OCW.

The area of interest is the projected area perpendicular to the centrifugal force

Area Equivalent = Σ

 $Q = \left[\frac{\mathcal{G}_{\text{lim}}\Delta P}{18n}\right] \left[\frac{2\pi}{3}\omega^2 N \cot a \left(r_1^2 - r_2^2\right)\right]$

 $Q = \left[\frac{\mathcal{G}_{\lim}\Delta P}{18\eta}g\right] \left[\frac{2\pi}{3g}\omega^2 N \cot a \left(r_1^2 - r_2^2\right)\right]$

Throughput = Q=

Sedimentation velocity for a particle Note the gravitational force constant

 Σ = surface area required for sedimentation in a tank to achieve same result as centrifuge

Process Objectives

Light phase – any solids are lost product

Heavy phase – any liquid is an impurity

Choosing the right separator

Primary Selection – Solids content

	SOLIDS CONTENT											
SEPARATOR TYPE	0			20		40		60		80		100
Chamber bowl centrifuge												
Solid bowl centrifuge												
Self cleaning separator												
Nozzle bowl separator												
Centrifugal decanter												