MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

Write your name below. This is a closed book exam. Solve all 6 problems. Read all problems thoroughly and read all parts of a problem. Many of the latter parts of a problem can be solved without having solved earlier parts. Show all work to receive full credit. Physical constants, formulas, standard reduction potentials, and a periodic table are given on the last two pages of the exam. You may detach the last 2 pages after the exam has started.

1. THERMODYNAMICS (12 points) \qquad
2. CHEMICAL EQUILIBRIUM (12 points) \qquad
3. ACID-BASE EQUILIBRIUM (12 points) \qquad
4. ACID-BASE TITRATION (22 points)
5. OXIDATION/REDUCTION (30 points) \qquad
6. OXIDATION/REDUCTION (12 points) \qquad

Total (100 points) \qquad
\qquad ANSWER KEY

1. THERMODYNAMICS (14 points total)

Consider the formation of MgO (s). Assume that $\Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ}$ and $\Delta \mathrm{S}_{\mathrm{r}}{ }^{\circ}$ are independent of temperature.
$\mathrm{Mg}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ} \mathrm{k} \mathrm{~kJ} / \mathrm{mol}^{-1} \\
& \Delta \mathrm{~S}_{\mathrm{r}}^{\circ}=-108 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} .
\end{aligned}
$$

(a) (6 points) Calculate $\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}$ for the formation of MgO (s) at $0{ }^{\circ} \mathrm{C}$ (273 K$)$. Is the reaction spontaneous or non-spontaneous at $0^{\circ} \mathrm{C}$?

$\Delta \mathrm{G}=-57 \underline{2} .52$

- $573 \mathrm{~kJ} / \mathrm{mol}$
spontaneous
(b) (6 points) Is there a temperature at which the formation of MgO switches from spontaneous to nonspontaneous or vice versa? If no, explain briefly why not. If yes, calculate the temperature (T^{*}) at which the spontaneity of the reaction switches.

$$
\begin{aligned}
& \text { Yes. } \\
& 0=\Delta \mathrm{H}-\mathrm{T}^{*} \Delta \mathrm{~S} \\
& \mathrm{~T}^{*}=\Delta \mathrm{H} / \Delta \mathrm{S} \\
& \mathrm{~T}^{*}=55 \underline{7} 4 \mathrm{~K} \\
& \mathrm{~T}^{*}=5570 \mathrm{~K}
\end{aligned} \quad \mathrm{~T}^{*}=\frac{-602 \mathrm{~kJ} / \mathrm{mol}}{-0.108 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K}} 9
$$

2. CHEMICAL EQUILIBRIUM (12 points total)

Explain the effect of each of the following stresses on the position of the following equilibrium:
$3 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$
The reaction as written is exothermic.
(a) (4 points) The equilibrium mixture is cooled. Explain your answer.
\longrightarrow shift toward products
Heat is produced in the forward direction. As heat is removed, the reaction will shift to produce more heat.
(b) (4 points) The volume of the equilibrium mixture is reduced at constant temperature. Explain your answer.
\longrightarrow shift toward products

If volume decreases, then the total pressure (and each partial pressure) increases.
3 mol of g to 2 mol of g
reaction shifts to 2 mol of gas.
(c) (4 points) Gaseous argon (which does not react) is added to the equilibrium mixture while both the total gas pressure and the temperature are kept constant. Explain your answer.
\longleftarrow shift toward reactants
If total pressure is the same, volume must have increased. If volume increased, the partial pressure of each gas decreased, so shift to side with more mol of gas to compensate

$$
3 \mathrm{molg} \leftarrow 2 \mathrm{molg}
$$

3. ACID-BASE EQUILIBRIUM (12 points total)

(a) (6 points) Calculate the pH in a solution prepared by dissolving 0.050 mol of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and 0.20 mol of sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$ in water and adjusting the volume to 500. mL . The pKa for acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is 4.75 .

$$
\begin{aligned}
& \text { buffer problem } \\
& \mathrm{pH} \cong \mathrm{pKa}-\log \left[\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right] \\
& \mathrm{pH} \cong 4.75-\log \left[\frac{0.050 \mathrm{~mol}}{0.20 \mathrm{~mol}}\right] \text { ok to use mol b/c volume is the same } \\
& \mathrm{pH} \cong 4.75-\underbrace{-0.6 \underline{0} 2} \\
& \mathrm{pH}=4.75+0.6 \underline{0} 2 \\
& \mathrm{pH} \cong 5.35
\end{aligned}
$$

(b) (6 points) Suppose 0.010 mol of NaOH is added to the buffer from part (a). Calculate the pH of the solution that results.

```
mol of \(\mathrm{HA}=0.05 \underline{0} \mathrm{~mol}-0.01 \underline{0} \mathrm{~mol}=0.04 \underline{0} \mathrm{~mol}\)
mol of \(\mathrm{A}^{-}=0.2 \underline{0} \mathrm{~mol}+0.01 \underline{0} \mathrm{~mol}=0.2 \underline{1} \mathrm{~mol}\)
\(\mathrm{pH} \cong \mathrm{pKa}-\log \left[\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right]\)
\(\mathrm{pH} \cong 4.75-\log \left(\frac{0.04 \underline{0} \mathrm{~mol}}{0.2 \underline{\mathrm{~mol}}}\right) \quad\) ok to use mol b/c volume is the same
\(\mathrm{pH}=4.75-\log 0.1 \underline{9}\)
    \(+0.7 \underline{2} 1\)
\(\mathrm{pH}=4.75+0.7 \underline{2} 1\)
\(\mathrm{pH}=5.47\)
```


4. ACID-BASE TITRATION (22 points total)

A 10.0 mL sample of $0.20 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$ solution is titrated with 0.10 M NaOH (aq). $\left(\mathrm{K}_{\mathrm{a}}\right.$ of HNO_{2} is 4.3×10^{-4}).
(a) (5 points) Calculate the volume of NaOH needed to reach the equivalence point.
$0.0100 \mathrm{~L} \times 0.20 \mathrm{~mol}=0.002 \underline{\mathrm{~mol}}$ of NaOH needed
L
$0.0020 \mathrm{~mol} \mathrm{NaOH} \times \frac{\mathrm{L}}{0.10 \mathrm{~mol}}=0.02 \underline{0} \mathrm{~L}$ or $\mathbf{2 0 .} \mathbf{~ m L}$
(b) (12 points) Calculate the pH at the equivalence point. Check assumptions for full credit.

This is a weak base problem. All of the HNO_{2} is converted to $\mathrm{NO}_{2}{ }^{-}$.
Check assumption:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}}= & \frac{\mathrm{x}^{2}}{0.06 \underline{6} 7-\mathrm{x}} \approx \frac{\mathrm{x}^{2}}{0.06 \underline{6} 7}=2.33 \times 10^{-11} \\
& \mathrm{x}=1.247 \times 10^{-6}=[\mathrm{OH}] \\
& \mathrm{pOH}=-\log \left(1.247 \times 10^{-6}\right) \\
& \mathrm{pOH}=5.9 \underline{0} \\
& \mathbf{p H}=14.00-5.90=\mathbf{8 . 1 0} \text { (accept } 8.08,8.09, \text { or } 8.10)
\end{aligned}
$$

$$
\begin{aligned}
& \text { initial mol of } \mathrm{NO}_{2}{ }^{-}=\frac{0.0020 \mathrm{~mol}}{0.030 \mathrm{~L}} \quad=0.06 \underline{6} 7 \mathrm{M} \\
& \mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HNO}_{2}+{ }^{-} \mathrm{OH} \\
& \begin{array}{llll}
\text { I } 0.06 \underline{6} 7 & 0 & 0
\end{array} \\
& \text { C -x }+\mathrm{x}+\mathrm{x} \\
& \text { E } 0.06 \underline{6} 7-\mathrm{x}+\mathrm{x}+\mathrm{x} \\
& \mathrm{~K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}} \quad \mathrm{~K}_{\mathrm{b}}=\frac{1.00 \times 10^{-14}}{4.3 \times 10^{-4}}=0.2 \underline{3} 3 \times 10^{-10} \text { or } 2 . \underline{3} 3 \times 10^{-11}
\end{aligned}
$$

(c) (5 points) Calculate the pH with 2.00 mL of NaOH added past the equivalence point.

$$
\begin{aligned}
& 0.0020 \mathrm{~L} \times \frac{0.10 \mathrm{~mol}}{\mathrm{~L}}=0.0002 \underline{0} \mathrm{~mol} \mathrm{NaOH} \\
& {[-\mathrm{OH}]=\underbrace{\frac{0.0002 \underline{0} \mathrm{~mol}}{10.0 \mathrm{~mL}+20 . \mathrm{mL}+2.00 \mathrm{~mL}}=0.006 \underline{5} \mathrm{M}}_{\text {new volume }=0.03 \underline{\mathrm{~L}} \mathrm{~L}}} \\
& \begin{aligned}
\mathrm{pOH} & =-\log \left[{ }^{\circ} \mathrm{OH}\right]=-\log (0.006 \underline{2}) \\
& =2.2 \underline{2} 4
\end{aligned} \\
& \mathrm{pH}=14.00-2.2 \underline{0} 4=\mathbf{1 1 . 8 0}
\end{aligned}
$$

5. OXIDATION/REDUCTION REACTIONS (30 points total)

For a cell constructed with a $\mathrm{Cu}(\mathrm{s}) \mid \mathrm{Cu}^{2+}(\mathrm{aq})$ anode and $\mathrm{Ag}^{+}(\mathrm{aq}) \mid \mathrm{Ag}(\mathrm{s})$ cathode at $25.0^{\circ} \mathrm{C}$.
(a) (5 points) Write the overall balanced equation under acidic conditions.

$$
\begin{gathered}
\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\
2\left(\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}\right) \\
\mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})+2 \mathrm{e}^{-} \\
\mathbf{C u}(\mathbf{s})+2 \mathbf{A g}^{+}(\mathbf{a q}) \rightarrow \mathbf{C u}^{2+}(\mathbf{a q})+2 \mathbf{A g}(\mathbf{s})
\end{gathered}
$$

(b) (13 points) Calculate the cell potential at $25.0^{\circ} \mathrm{C}$ under non-standard conditions:
$\left[\mathrm{Cu}^{2+}\right]=0.300 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=0.0500 \mathrm{M}$

$$
\begin{aligned}
& E_{\text {cell }}^{\circ}=E^{\circ} \text { (cathode) }-E^{\circ} \text { (anode) } \\
& E_{\text {cell }}^{\circ}=0.80-0.34=0.4 \underline{6} \mathrm{~V} \\
& \mathrm{n}=2 \\
& \mathrm{Q}=\frac{(0.300)}{(0.0500)^{2}} \\
& E_{\text {cell }}=E^{\circ}{ }_{\text {cell }}-(1 / \mathrm{n})(\mathrm{RT} / \Im) \operatorname{lnQ} \\
& \quad=E_{\text {cell }}^{\circ}-\underbrace{0.025693 \mathrm{~V}} \underbrace{4.78 \underline{7}} \\
& =0.4 \underline{\mathrm{~V}} \mathrm{~V}-0.0615 \underline{0} \mathrm{~V} \\
& =\mathbf{0 . 4 0} \mathbf{~ V}
\end{aligned}
$$

(c) (6 points) Is the above cell a galvanic or electrolytic cell under standard conditions? Explain your choice of answer.

galvanic

$\Delta \mathrm{E}^{\circ}$ is positive, so $\Delta \mathrm{G}^{\circ}$ is negative
(d) (6 points) Of the following, list all of the atoms or ions that will oxidize Ag (s):
$\mathrm{Au}^{+}(\mathrm{aq}), \mathrm{Pb}^{2+}(\mathrm{aq}), \mathrm{Zn}(\mathrm{s}), \mathrm{Cr}^{3+}(\mathrm{aq}), \mathrm{Ni}(\mathrm{s}), \mathrm{Au}$ (s).
Au^{+}only
higher redox potential than Ag^{+}

6. OXIDATION-REDUCTION (12 points total)

The following reaction has an ΔE° (cell) of 2.27 V and a $\mathrm{K}=10^{383}$ at $25^{\circ} \mathrm{C}$:
$2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{Zn}(\mathrm{s})+16 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Zn}^{2+}(\mathrm{aq})+24 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(a) (4 points) What is the oxidation number for Mn in MnO_{4}^{-}?

(b) (4 points) How many electrons are transferred in this reaction (in other words, what is " n ")?

$$
\begin{aligned}
& \text { Consider either: } \quad 2\left[\begin{array}{cc}
\mathrm{MnO}_{4}{ }^{-}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+} \\
\uparrow \\
+7 & +2
\end{array}\right] \\
& \text { or } \\
& \\
& 5\left[\begin{array}{cc}
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \\
\uparrow & \uparrow \\
0 & +2
\end{array}\right] \\
& \mathbf{1 0} \text { electrons } \\
& \mathrm{n}=10
\end{aligned}
$$

(c) (4 points) Would you expect a large quantity of $\mathrm{MnO}_{4}{ }^{-}$ions at equilibrium at $25^{\circ} \mathrm{C}$? Why or why not?

No.
Expect a small quantity of $\mathrm{MnO}_{4}{ }^{-}$ions because K is huge.

Equations and constants for Exam 3

$$
\begin{array}{ll}
\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} & \mathrm{pK}_{\mathrm{a}}=-\log \left[\mathrm{K}_{\mathrm{a}}\right] \\
\mathrm{R}=8.315 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
\mathfrak{J} \text { (Faraday's constant) }=96,485 \mathrm{C} \mathrm{~mol}^{-1} & \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C} & \mathrm{pH} \cong \mathrm{pK}_{\mathrm{a}}-\log \left(\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right) \\
1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s} & \Delta E^{\circ}(\text { cell })=E^{\circ}(\text { cathode })-E \\
\mathrm{~K}_{\mathrm{w}}=1.00 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} & \mathrm{RT} / \mathfrak{J}=0.025693 \mathrm{~V} \text { at } 25.0 \\
14.00=\mathrm{pH}+\mathrm{pOH}^{\text {at } 25^{\circ} \mathrm{C}} & \mathfrak{J} / \mathrm{RT}=38.921 \mathrm{~V}^{-1} \text { at } 25.00 \\
\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K} & \Delta E_{\text {cell }}=E_{\text {cell }}^{\circ}-(\mathrm{RT} / \mathfrak{J} \mathrm{n}) \ln \\
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q} & \ln \mathrm{~K}=(\mathrm{n} \mathfrak{I} / \mathrm{RT}) \Delta E^{\circ} \\
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} & E_{3}^{\circ}=\left[\mathrm{n}_{1} E_{1}^{\circ}(\text { reduction })-\mathrm{n}_{2}\right. \\
\ln \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=-\left(\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) & \Delta \mathrm{G}^{\circ}{ }_{\text {cell }}=-(\mathrm{n})(\mathfrak{J}) \Delta E_{\text {cell }}^{\circ} \\
\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}} & \mathrm{Q}=\mathrm{It}
\end{array}
$$

Standard Reduction Potentials at $25^{\circ} \mathrm{C}$

Half-Reactions	$E^{\circ}($ volts $)$
$\mathrm{Au}^{+}(a q)+\mathrm{e}^{-} \Rightarrow \mathrm{Au}(\mathrm{s})$	1.69
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	1.51
$\mathrm{Ag}^{+}(\mathrm{aq})+1 \mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	0.80
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \Rightarrow \mathrm{Cu}(s)$	0.34
$\mathrm{AgCl}^{(\mathrm{s})+1 \mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq})}$	0.22
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	0.15
$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \Rightarrow \mathrm{H}_{2}$	0
$\mathrm{~Pb}^{2+}(a q)+2 \mathrm{e}^{-} \Rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(a q)+2 \mathrm{e}^{-} \Rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \Rightarrow \mathrm{Ni}(\mathrm{s})$	-0.23
$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(s)$	-0.44
$\mathrm{Cr}^{3+}(a q)+3 \mathrm{e}^{-} \Rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \Rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76

Image by MIT OpenCourseWare

