Chapter 11 Nucleophilic Substitution  $(S_N 1/S_N 2)$ Elimination (E1/E2)

**Suggested Problems for Elimination:** 

11.14, 11.17-19, 11.20, 11.34, 11.40, 11.45-46, 11.49-50, 11.56, 11.59, 11.65, 11.68

## Substitution Reactions ( $S_N 2$ versus $S_N 1$ )

S<sub>N</sub>1

| Mechanism:       | Concerted                                                                                                                                                                                                                     | Two Steps<br>(Look for carbocation rearrangements.)                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Rate Equation:   | Rate = k <sub>r</sub> [R–X][Nuc]                                                                                                                                                                                              | Rate = k <sub>r</sub> [R–X]                                                                                                        |
| Stereochemistry: | Stereospecific<br>(inversion)                                                                                                                                                                                                 | Loss of Stereochemistry                                                                                                            |
| Substrate:       | Sterics:<br>(methyl > 1° > 2°)<br>No S <sub>N</sub> 2 with 3°!<br>Accesible to Nu:<br>(benzylic > allylic > 1°)                                                                                                               | Cation Stability<br>(benzylic > allylic > 3° > 2°>>1°)<br>No 1° or methyl R <sup>+</sup> without<br>extra resonance stabilization! |
| Nucleophile:     | Strong/Moderate Required<br>strong: RS <sup>-</sup> , I <sup>-</sup> , R <sub>2</sub> N <sup>-</sup> , R <sub>2</sub> NH, RO <sup>-</sup> , CN <sup>-</sup><br>moderate: RSH, Br <sup>-</sup> , RCO <sub>2</sub> <sup>-</sup> | Not Important                                                                                                                      |
| Leaving Group:   | Moderately Important<br>(-OTf >> -OTs @ -OMs >><br>-I > -Br > -CI)                                                                                                                                                            | <b>Very Important</b><br>(-OTf >> -OTs @ -OMs >><br>-I > -Br > -CI)                                                                |
| Solvent:         | Polar Aprotic                                                                                                                                                                                                                 | Polar Protic                                                                                                                       |

## Elimination Reactions: E2 versus E1

|                  | E2                                                                                                                                    | E1                                                            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Mechanism:       | Concerted                                                                                                                             | Two Steps<br>(Look for carbocation rearrangements.)           |
| Rate Equation:   | Rate = k <sub>r</sub> [R–X][Base]                                                                                                     | Rate = k <sub>r</sub> [R–X]                                   |
| Stereochemistry: | Stereospecific<br>(antiperiplanar TS)                                                                                                 | Not Stereospecific                                            |
| Substrate:       | Alkene Stability<br>$(3^\circ > 2^\circ > 1^\circ)$                                                                                   | <b>Cation Stability</b><br>(benzylic > allylic > 3° > 2°>>1°) |
| Base:            | Strong Base Required<br>(RO <sup>-</sup> , R <sub>2</sub> N <sup>-</sup> )                                                            | Not Important: Usually Weak<br>(ROH, R <sub>2</sub> NH)       |
| Leaving Group:   | <b>Moderately Important</b><br>(same trend as S <sub>N</sub> 1)                                                                       | Very Important<br>(same trend as S <sub>N</sub> 1)            |
| Solvent:         | Wide Range of Solvents                                                                                                                | Polar Protic                                                  |
| Product Patio:   | Zaitsev Rule: The most highly substituted alkene usually predominates.                                                                |                                                               |
|                  | <b>Hofmann Product:</b> Use of a sterically hindered base will result in formation of the least substituted alkene (Hofmann product). |                                                               |

## **Generic Reaction-Energy Diagrams**





 $^{\ast}$  Under conditions that favor a unimolecular reaction (weak nuc/base and polar protic solvent), mixtures of S\_N1 and E1 are usually obtained.