Massachusetts Institute of Technology Organic Chemistry 5.13

Wednesday, October 22, 2003
Prof. Timothy F. Jamison

Hour Exam \#2

Name (please both print and sign your name)

Official Recitation Instructor

Directions: Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

Please read through the entire exam before beginning, in order to make sure that you have all the pages and in order to gauge the relative difficulty of each question. Budget your time accordingly.

Show all of your work if you wish to receive partial credit.

You should have $\mathbf{7}$ pages total: 5 exam pages including this page and $\mathbf{2}$ blank pages for scratchwork.

Question:

64 points
2. \qquad /

18 points
3. \qquad /

Grader:

\qquad
\qquad
\qquad

Total: \qquad / 100 points

1. (64 points total, 4 points each) In each box below, draw the structure of the major product of the reaction. Indicate relative stereochemistry where appropriate. If no reaction occurs, put a large \mathbf{X} in the box. (Note: " D " = deuterium, ${ }^{2} \mathrm{H}$)

(1., continued - see previous page for directions)

2. (18 points) Using only lithium diisopropylamide (LDA), 1,3-butadiene, iodomethane, fumaric dialdehyde, triphenylphosphine, and any other inorganic reagents, propose a synthesis of trans,trans-(1,5)-cyclodecadiene. Write your synthesis in the forward direction (not retrosynthetic analysis), with the reagents (if any) required for each step above each arrow.

LDA

1,3-butadiene

$$
\mathrm{CH}_{3} \mathrm{I}
$$

iodomethane

fumaric dialdehyde

triphenylphosphine
(This is the target molecule.)

trans,trans-(1,5)-cyclodecadiene
3. (18 points) The relative energy levels of the molecular orbitals for the cyclopropenyl cation, anion, and radical can be derived using Frost's Circle ("Polygon Rule") (below).
a. (3 points) Clearly draw the "zero energy" line on all three diagrams below, i.e. for all three species (cation (A.), anion (B.), radical (C.)).
b. (3 points) In the box next to the energy level for each orbital, write "bonding", "nonbonding", or "anti-bonding", as appropriate.
c. (6 points) Populate the orbitals (bold horizontal lines) of each species (cation (A.), anion (B.), radical (C.)) with the appropriate number of electrons to indicate the ground state configuration (lowest energy) in each case.
d. (6 points) In the shaded, rounded box to the right of each diagram, indicate whether the species is aromatic or anti-aromatic as defined by Hückel's rule.

(B)

©.

