# Non -linear Curve fitting with 【 M icrosoft Excel Solver. Calculation of kobs, kreal and Debye-Hückel plot. 

Written by M. D. Gheorghiu

## I. Kinetics: calculation of kobs and kreal.

1. From File click on New.., then on General Workbook:


[^0]
2. From File, Save as... the workbook. My preference for file name is Kinetics_MG (MG are my initials) and it is saved in the Personal folder.


3. Five sheets are necessary in your workbook. Four are for Kinetics data. The fifth is for Debye_Huckel calculation. You have to append these five sheets to your written or Oral report.

If there are not enough Sheets, click Insert and then Worksheet.


Name four sheets, each for a kinetic run. For example, I have chosen: KineticsA (for the $0.02 \mathrm{M} \mathrm{NaNO}_{3}$ ), KineticsB (for the $0.05 \mathrm{M} \mathrm{NaNO}_{3}$ ), KineticsC, (for the 0.1 M $\mathrm{NaNO}_{3}$ ) and KineticsD (for the 0.2 M NaNO 3 ).

4. Now is time to add your experimental data to the four sheets. Take for example, Kinetics_B sheet. Type in column A, the time (in seconds), and in column B the experimental absorbances (@420nm) corresponding to the respective time. Add on the Table two more columns. One for calculated absorbances (from equation 3) and a second column for the square of the difference experimental absorbances (column B)-calculated absorbances (column C).

| 1 | time (seconds) | experimental absorbances ( 420 nm ) | Calculated absorbances (equation 3) | $\begin{gathered} \text { Diff^2 } \\ {\left[(\text { exp-calc })^{\wedge} 2\right]} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 0.50723 |  |  |
| 3 | 60 | 0.48962 |  |  |
| 4 | 120 | 0.4733 |  |  |
| 5 | 180 | 0.45877 |  |  |
| 6 | 240 | 0.44608 |  |  |
| 7 | 300 | 0.43346 |  |  |
| 8 | 360 | 0.42337 |  |  |
| 9 | 420 | 0.4129 |  |  |
| 10 | 480 | 0.40375 |  |  |
| 11 | 540 | 0.39626 |  |  |
| 12 | 600 | 0.38828 |  |  |
| 13 | 660 | 0.38049 |  |  |
| 14 | 720 | 0.37381 |  |  |
| 15 | 780 | 0.36777 |  |  |
| 16 | 840 | 0.36227 |  |  |
| 17 | 900 | 0.3568 |  |  |
| 18 | 960 | 0.35213 |  |  |
| 19 | 1020 | 0.34729 |  |  |
| 20 | 1080 | 0.34312 |  |  |
| 21 | 1140 | 0.33925 |  |  |
| 22 | 1200 | 0.33557 |  |  |
| 14. | - Kin | eticsA $\lambda$ KineticsB | KineticsC / Kin | neticsD / Sheet5 |

5. Just as a reminder, the second order integrated kinetic equation, as it was presented to you in my hand-out, is printed next. The meaning of variables are the same as in the hand-out and the Lab Manual:

$$
\mathbf{A}=\mathbf{A}_{\mathbf{f}} \frac{1}{1-\frac{\mathbf{A}_{0}-\mathbf{A}_{\mathbf{f}}}{\mathbf{A}_{0}} \exp \left(-\mathbf{c}_{\mathbf{f}} \mathbf{k}_{\text {obs }} \mathbf{t}\right)}
$$

Integrated second order kinetic equation in terms of absorbance that is curve-fitted to the experimental data.
$\mathrm{A}_{0}=$ initial absorbance
A = absorbance at time $t$
$A_{f}=$ absorbance when all $\mathrm{H}_{2}$ Asc has reacted.
6. We are now just a step before using Microsoft Excel Solver. On each kinetic sheet one must add cells containing two sets of information. In cells H2 and H3 are typed the values of the "fixed" variables A0 and epsilon, respectively. The content of the cells H5 (Af value) and H6 (kobs) is changing. Intially, "guess" values are typed in for the variables of Af and kobs. After the minimization process, Solver returns the regression coefficients in the changing cells H5 and H6, respectively. Solver is not providing the standard deviations of the coefficients.
7. In order to be automatically plug into the kinetic equation, the cells containing the values of A0, epsilon, Af, kobs must be given a name (this is an Excel requirement).

- For A0, type $=\mathrm{B} 2$ in cell H2
- For epsilon type in cell H3, the value obtained by you for epsilon (calculated from Lambert-Beer equation, recorded during day \#1). The slope of the least square straight line, calculated from my results, gave $\varepsilon=1020$.
- Type in cell H5 the best guess value for Af, that is 0.25 (Why?).
- Type the your guess value for kobs in cell H6. My guess is 5 .


In order to be automatically inserted in equation 3 , A0, epsilon, Af and kobs must be assigned a name. For example to name A0, first click on cell H2. Than click on Insert, Name, Define:


The following window pops-up:


Please notice and check the correct location of the value of $\mathbf{A 0}$, in this case is (according to Excel grammar): KineticsB!\$H\$2, that is on KineticsB sheet and location H2. Click on add button. Click on OK. The naming continues for cells H3:H5. Next, let us name as $\mathbf{t}$ the vector A2:A22. First highlight the column A2:A22, then click on Insert, Name, Define and change the names in workbook as $\mathbf{t}$ (check Refers to address in order be correct). The Define Name window will look like:


- In the first step, "crude" values of absorbances are calculated.
- In the second step, the optimization step, the crude values of calculated absorbances are refined to best fit to experimental values.
A. The "Crude" Step:

Type in cell C2 =Af/((1-((A0-Af)/A0)*EXP(-kobs*t*Af/epsilon))). Cell H2 is filled with the calculated absorbance for $\mathrm{t}=0$ seconds. According to equation $\mathbf{3}$ it is equal with A0.


|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 图 Eile Edit Yiew Insert Format Iools Data window Help |  |  |  |  |  |  |  |  |  |
|  $\mathrm{C} 2 \downarrow \quad=\quad=\mathrm{Af}\left(\left(11-((\mathrm{AD}-\mathrm{Af}) / \mathrm{A} 0)^{*} E X P\left(-\right.\right.\right.$ kobs $^{*} \mathrm{t}^{*} \mathrm{Aff} /$ epsilon $)$ ) $)$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | A | B | C | D | E |  |  | G | H |
| 1 | time (seconds) | experimental absorbances ( 420 nm ) | Calculated absorbances (equation 3) | $\begin{gathered} \text { Diff^2 } \\ {\left[\left(\text { exp-calc) }^{\wedge} 2\right]\right.} \end{gathered}$ |  |  |  |  |  |
| 2 | 0 | 0.50723 | 0.50723 |  |  |  |  | A0= | 0.50723 |
| 3 | 60 | 0.48962 |  |  |  |  |  | epsilon= | 1020 |
| 4 | 120 | 0.4733 |  |  |  |  |  |  |  |
| 5 | 180 | 0.45877 |  |  |  |  |  | Af= | 0.25 |
| 6 | 240 | 0.44608 |  |  |  |  |  | kobs= | 5 |
| 7 | 300 | 0.43346 |  |  |  |  |  |  |  |
| 8 | 3 Kn | 0.49337 |  |  |  |  |  |  |  |

In order to fill in cells C3 through C22, click on cell C2. Bring the cursor to the right low corner and press left mouse. Drag all the way down to cell C22. Depress the left mouse. All cells (C2:C22) are now filled in with the calculated ("crude") Absorbances:

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| 1 | time (seconds) | experimental absorbances ( 420 nm ) | Calculated absorbances (equation 3) | $\begin{gathered} \text { Diff } 2 \\ {\left[(\text { exp-calc })^{\wedge} 2\right]} \end{gathered}$ |
| 2 | 0 | 0.50723 | 0.50723 |  |
| 3 | 60 | 0.48962 | 0.47275 |  |
| 4 | 120 | 0.4733 | 0.44466 |  |
| 5 | 180 | 0.45877 | 0.42140 |  |
| 6 | 240 | 0.44608 | 0.40187 |  |
| 7 | 300 | 0.43346 | 0.38528 |  |
| 8 | 360 | 0.42337 | 0.37104 |  |
| 9 | 420 | 0.4129 | 0.35873 |  |
| 10 | 480 | 0.40375 | 0.34800 |  |
| 11 | 540 | 0.39626 | 0.33859 |  |
| 12 | 600 | 0.38828 | 0.33029 |  |
| 13 | 660 | 0.38049 | 0.32294 |  |
| 14 | 720 | 0.37381 | 0.31640 |  |
| 15 | 780 | 0.36777 | 0.31055 |  |
| 16 | 840 | 0.36227 | 0.30531 |  |
| 17 <br> 18 | 900 | 0.3568 | 0.30059 |  |
| 18 | 960 | 0.35213 | 0.29634 |  |
|  |  |  |  |  |
| \| $4 \rightarrow$ KineticsA $\lambda$ KineticsB / KineticsC / KineticsD $<$ Sheet5 / |  |  |  |  |

B. Optimization step: N on-linear curve fitting step.
9. Type in cell D2=(B2-C2)^2. Press Enter key.
10. Click on cell D2. Drag all the way down to cell D22, as it was described for calculated absorbances.
11. In cell D23 sum (click on icon $\Sigma$ ) D2 through D22.

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 蜀 File Edit Yiew Insert Format Iools Data window Help AutoSum |  |  |  |  |  |
|  |  |  | $\text { - } 10$ | $\boldsymbol{I}$ 凹\| |  |
| SUM $\quad \times \vee==$ SUM(D2:D22) |  |  |  |  |  |
|  | A | B | C | D | E |
| 7 | 300 | 0.43346 | 0.38528 | $2.3217 \mathrm{E}-03$; |  |
| 8 | 360 | 0.42337 | 0.37104 | $2.7381 \mathrm{E}-03$ |  |
| 9 | 420 | 0.4129 | 0.35873 | 2.9343E-03! |  |
| 10 | 480 | 0.40375 | 0.34800 | 3.1080E-03 |  |
| 11 | 540 | 0.39626 | 0.33859 | $3.3257 \mathrm{E}-03$ |  |
| 12 | 600 | 0.38828 | 0.33029 | $3.3624 \mathrm{E}-03$ ) |  |
| 13 | 660 | 0.38049 | 0.32294 | 3.3119E-03 |  |
| 14 | 720 | 0.37381 | 0.31640 | 3.2963E-03! |  |
| 15 | 780 | 0.36777 | 0.31055 | $3.2741 \mathrm{E}-03$ f |  |
| 16 | 840 | 0.36227 | 0.30531 | $3.2447 \mathrm{E}-03$ ? |  |
| 17 | 900 | 0.3568 | 0.30059 | 3.1592E-03) |  |
| 18 | 960 | 0.35213 | 0.29634 | 3.1123E-03 |  |
| 19 | 1020 | 0.34729 | 0.29250 | $3.0021 \mathrm{E}-03$ ? |  |
| 20 | 1080 | 0.34312 | 0.28902 | 2.9273E-03 |  |
| 21 | 1140 | 0.33925 | 0.28585 | $2.8512 \mathrm{E}-03$ |  |
| 22 | 1200 | 0.33557 | 0.28298 | $2.7661 \mathrm{E}-03$ |  |
| 23 |  |  |  | -SUM(D2:D22)] |  |

Than press Enter key.
12. Click on cell D23. Click Tools and than Solver...

XMicrosoft Excel - Kinetics_MG.xls


The Solver Parameters window pops-up. The target cell is D23.


Type into By Changing the cells: H5 and H6 (that is \$H\$5 and \$H\$6).


On Solver Parameters click on Options. Change Max Time to $\mathbf{1 2 0 0}$ seconds (kinetics run time). Click OK.


The Solver Parameters window comes back. Click first on Min and than on Solve button:


The Solver Results window pops-up. Note that the values in cells H4 and H5 are updated. You know by now the value of kobs as $\mathbf{2 . 6 0}$. Note that the initial value the "guess"\} has been taken as 5 .


You can print some reports: answer, sensitivity and limits. For Example the Answer Report looks like:


Repeat steps 4 through 12 for sheets KineticsA, KineticsC and KineticsD. Whenever is necessary, please update the Reference in the Define Name window.

## II. Debye-Hückel equation.

In the "Kinetics" hand-out (see there the meanings of variables), the Debye-Hückel equation is defined as:

$$
\begin{equation*}
\log \mathbf{k}_{\text {real }}=\log \mathbf{k}_{0}+\mathbf{1 . 0 2} * \mathbf{Z}_{1} * \mathbf{Z}_{2} \frac{\mathbf{I}^{1 / 2}}{1+\mathbf{I}^{1 / 2}}=\log \mathbf{k}_{0}+1.02 * 3 * \frac{\mathbf{I}^{1 / 2}}{1+\mathbf{I}^{1 / 2}} \tag{6}
\end{equation*}
$$

where $\mathrm{k}_{\text {real }}$ is given by equation (4):

$$
\begin{equation*}
\mathbf{k}_{\text {real }}=\mathbf{k}_{\text {obs }} \frac{\left[\mathbf{H}^{+}\right]}{\mathbf{K}_{\mathrm{a} 1}} \tag{4}
\end{equation*}
$$

Use the sheet\#5 (renamed as Debye-Hückel) to compute and draw the linear plot logkreal (y axis) versus $\mathbf{I}^{0.5} /\left(\mathbf{I}^{\mathbf{0} 5}+\mathbf{1}\right)$ (x axis). When fished the contend of the DebyeHückel worksheet will look like:


1. Build a Table of 7 columns and 5 rows. The order and the content of the headings are suggested in Fig. X. Remember that in Excel x-axis values have to stay left to $y$-axis values (for example, column A values are on $x$-axis, column B values are displayed on $y$-axis).
2. Fill in kobs values by reading the address from the respective worksheet. Click, for example on cell C2 and type: KineticsA!\$H\$6. Cell two is filled with the value 2.07 for kobs. Cell C3 has to be filled with KineticsB!\$H\$6, cell C4 with KineticsC!\$H\$6 and cell C5 with KineticsD!\$H\$6.

## S_ Microsoff Exeel - Kinetict_M6.xht

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [19] Ele Edt Yew Insert Farnat Iods pota widow Help |  |  |  |  |  |  |  |
| Arial |  | - 10 - |  | $\boldsymbol{I}$ U |  |  | F $\ddagger$ ( |
| C5 |  |  |  |  |  |  |  |
|  | A | 8 | C | D | E | F | G |
| 1 | $\mathrm{l}^{1} 1 / 2\left(1{ }^{\wedge} 1 / 2+1\right)$ | logkreal | kobs | $\begin{gathered} \text { kreal } \\ \left(\text { kobs }^{*}(\mathrm{H}+\mid / 2 / \mathrm{Ka} 1)\right. \end{gathered}$ | NaNO3 (stock solution conc) | NaNO3 real (adding the HNO3, then diluted to half) | Square root of the ionic strength \|^1/2 |
| 2 |  |  | 2.070 |  |  |  |  |
| 3 |  |  | 2.602 |  |  |  |  |
| 4 |  |  | 3.793 |  |  |  |  |
| 5 |  |  | 4.808 |  |  |  |  |
| 6 |  |  |  |  |  |  |  |

3．Add on the worksheet information regarding the $\mathrm{HNO}_{3}$ molarity（cell B7）．Type the acidity constant for ascorbic acid（Ka1＝6．76＊10 ${ }^{-5}$ ）into cell B 8 ．


4．Fill in the column D2 through D5 with calculate kreal（see equation 4）．For example in cell D2：$=(\mathrm{C} 2 / \$ \mathrm{~B} \$ 8)^{*} 0.5 * \$ \mathrm{~B} \$ 7\left(0.5\right.$ appears because the $\mathrm{HNO}_{3}$ in the UV cuvette is the half diluted $\mathrm{HNO}_{3}$ stock solution）．Because cells B 7 and B 8 are referred to absolute address，for example $\$ B \$ 7$ ，you can generate automatically the content of the subsequent D2：D5 cells．Click on D2，move the cursor to right lower corner and pressing left mouse，drag all the way down to D5．Cells are filled automatically．

| X Miciozell Excel－Kineticz＿M6．xls |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 团 Eie Edz yem yreert Fgrmat Iools pata yindow Help |  |  |  |  |  |  |  |
| Anid |  |  | － 10 － | B $\boldsymbol{I}$ 区 | 國 \％ | ，+10.00 | 紒理田•＊ |
| D5＊ |  |  |  |  |  |  |  |
|  | A |  |  |  | E | F | G |
| 1 | $1{ }^{\wedge} 1 / 2 /\left(\beta^{\wedge} 1 / 2+1\right)$ | logkreal | kobs | $\left\|\right\|$ | NaNO3 （stock solution conc） | NaNO3 real （adding the HNO3，then diluted to halfi | Square root of the ionic strength 1＾1／2 |
| 2 |  |  | 2.070 | 147.01 |  |  |  |
| 3 |  |  | 2.602 | 184.75 |  |  |  |
| 4 |  |  | 3.793 | 269.30 |  |  |  |
| 5 |  |  | 4．808 | 341.40 |  |  |  |
| 5 |  |  |  |  |  |  |  |
| 7 | $\begin{gathered} \text { HNO3 } \\ (\text { molarity }) \end{gathered}$ | 0.0096 |  |  |  |  |  |
| 8 | Ascorbic acid， $K a 1=$ | 6．76E．05 |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |

5. Calculate logkreal in cell D2 as LOG10(D2). Drag the cell content as described above all the way down to B 5 :

6. The remaining calculation refers to $\mathbf{I}^{0.5} /\left(\mathbf{I}^{0.5}+\mathbf{1}\right)$ the x -axis variable calculation in column A.

- First fill in $\mathrm{NaNO}_{3}$ stock solution molarities. In my experiments I used the values printed in columns E2:E5.
- Second, in column F2:F5 calculated the real NaNO3 + HNO3 molarities. For example in cell F2, calculate $=(\mathrm{E} 2+\$ \mathrm{~B} \$ 7)^{*} 0.5$. Multiplication with 0.5 is because in the UV cuvette the stock solution become half diluted as result of the $3 \mathrm{~mL}+3 \mathrm{~mL}$ mixing (see the experiment and handouts). Remember that for monovalent anions and cations, molarities are numerically equal to Ionic Strength.

| （1）Ele Edt yew Insert Fgrmat Lools Dita whiow Help |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ｜Arial |  |  | － 10 － | B $\boldsymbol{I}$ U | \＃ | \％，${ }^{\text {a }}$ |  |
| G2 $\quad$－ |  | － |  |  |  |  |  |
|  | A | B | C | D | E | F | G |
| 1 | $\left.1 \times 1 / 2 /()^{\wedge} 1 / 2+1\right)$ | logkreal | kohs | $\begin{gathered} \text { kreal } \\ \left(\text { kobs }^{*}(\mathrm{H}+1 / 2) / \mathrm{Ka}\right) \end{gathered}$ | NaNO 3 （stock solution conc） | NaNO3 real （adding the HNO3，then diluted to half） | Square root of the ionic strength $\mu^{1} 1 / 2$ |
| 2 |  | 2.17 | 2.070 | 147.01 | 0.0204 | 0.0150 |  |
| 3 |  | 2.27 | 2.602 | 184.75 | 0.0500 | 0.0298 |  |
| 4 |  | 2.43 | 3.793 | 269.30 | 0.1002 | 0.0549 |  |
| 5 |  | 2.53 | 4.808 | 341.40 | 0.2003 | 0.1050 |  |
| 5 |  |  |  |  |  |  |  |
| 7 | $\begin{gathered} \text { HNO3 } \\ \text { (molarity) } \end{gathered}$ | 0.0096 |  |  |  |  |  |
| 8 | Ascorbic acid， Ka1－ | 6．76E－ 05 |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |

－Third，in cells G2：G5 calculate the square root of value from cell F2：F5． For example，in cell G2 type＝SQRT（F2），and press Enter．
－Fourth，in cells A2：A5 calculate $\mathbf{I}^{0.5} /\left(\mathbf{I}^{\mathbf{0 . 5}}+\mathbf{1}\right)$ ．For example，type $=\mathrm{G} 2 /(\mathrm{G} 2+1)$ in cell A2．Click on the cell．Drag the lower right corner all the way down to A5．

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | ［ $4^{(2)}$ |
|  |  |  |  |  |  |  |  |
| Arid |  |  | － 10 ． |  |  |  | 吥的 田• |
|  | Chart Area $\quad$－1 | ＝ |  | － P |  |  |  |
|  | A | B | C | 0 | E | F | G |
| 1 | $1 \wedge 1 / 2 /(1 \times 1 / 2+1)$ | logkreal | kohs | $\begin{gathered} \text { kreal } \\ \left(\text { kohs }^{\prime}([\mathrm{H}+\mid / 2) / \mathrm{Ka1})\right. \end{gathered}$ | $\mathrm{NaNO}_{3}$ （stock solution conc） | NaNO3 real （adding the HNO3，then diluted to half | Square root of the ionic strength $\mu^{\wedge} 1 / 2$ |
| 2 | 0.1091 | 2.17 | 2.070 | 147.01 | 0.10204 | 0.0150 | 0.1225 |
| 3 | 0.1472 | 2.27 | 2.602 | 184.75 | 0.0500 | 0.0298 | 0.1726 |
| 4 | 0.1898 | 2.43 | 3.793 | 269.30 | 0.1002 | 0.0549 | 0.2343 |
| 5 | 0.2447 | 2.53 | 4.808 | 341.40 | 0.2003 | 0.1050 | 0.3240 |
| 6 |  |  |  |  |  |  |  |
| 7 | $\begin{gathered} \text { HNO3 } \\ \text { (molarity)= } \end{gathered}$ | 0.0096 |  |  |  |  |  |
| 8 | Ascerbic acid， Ka1＝ | 6．76E 05 |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |
| 10 | Slope－ | 2.78 |  |  |  |  |  |
| 11 | Intercept－ | 1.87 |  |  |  |  |  |
| 12 | 40－ | 73.90 |  |  |  |  |  |
| 13 | （＊＊2＝ | 0.9809 |  |  |  |  |  |

7．The last step consists of the Debye－Hückel plot．
－Highlight columns A2：B5．Click on Insert than Chart．．．：


- In the Chart Wizard window Step 1, choose Chart type: XY(Scatter); and the highlighted Chart sub-type.

- Click next to steps 2 and 3. Fill in the chart title, value (X) axis and value (Y) axis respectively.

- Click Next and than Finish.
- After a few editing, the graph looks:

|  | A | 旦 | c | D | E | F | G |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.1091 | 2.17 | 2.070 | 147.01 | 0.0204 | 0.0150 | 0.1225 |  |
| 3 | 0.1472 | 2.27 | 2.602 | 184.75 | 0.0500 | 0.029 | 0.1726 |  |
| 4 | 0.1288 | 2.43 | 3.793 | 2699.30 | 0.1002 | 0.054 | 0.3243 |  |
| 5 | 0.244 | 2.53 | 4.808 | 341,40 | 0.2003 | 0.1050 | 0.3240 |  |
| 6 |  |  |  |  |  |  |  |  |
| 7 | $\begin{gathered} \mathrm{HNOS} \\ \text { (molarity)- } \end{gathered}$ | 0.0096 |  |  |  |  |  |  |
|  | Ascorbic acid, |  |  |  |  |  |  |  |
| 8 |  | 6. $76 E 05$ |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |

- The least square straight line is added on the graph, by clicking on Chart, than Add trendline..


Choose Type the Trend/Regression type, Linear.


- Click on Options. Check display equation on the chart and Display Rsquared value on the chart:

- The least square straight line has the equation: $\mathrm{y}=2.7835 \mathrm{x}+1.8686$ and $\mathrm{R}^{2}=0.9809$ (satisfactory, however I am confident that 5.310 students will get a better $\mathrm{R}^{2}$ ).

| - |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | C | D | E | F | G | H |
| 2.17 | 2.070 | 147.01 | 0.0204 | 0.0150 | 0.1225 |  |
| 227 | 2.602 | 184.75 | 0.0500 | 0.0298 | 0.1726 |  |
| 2.43 | 3.793 | 269.30 | 0.1002 | 0.0549 | 0.2343 |  |
| 2.53 | 4.808 | 341.40 | 0.2003 | 0.1050 | 0.3240 |  |


| 0.0096 |  |  |
| :---: | :--- | :--- |
| 6.76 E .05 |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


8. In order to compute the slope $\left(1.02 * Z_{1} * Z_{2}\right)$ and intercept, ko (rate constant at $\mathrm{I}=0$ ), and R2, let first add these cells (H10:H12) to the Debye-Hückel worksheet.

- Type $=\operatorname{SLOPE}(\mathrm{B} 2: \mathrm{B} 5, \mathrm{~A} 2: \mathrm{A} 5)$ into cell next (B10) to Slope=.
- Type $=\operatorname{INTERCEPT}(\mathrm{B} 2: B 5, \mathrm{~A} 2: A 5)$ into cell next (B11) to Intercept=
- Type $=10^{\wedge}$ B11 into cell next (B12) to $\mathbf{k 0}=$
- Type $=$ RSQ(B2:B5,A2:A5) next (B13) to $\mathbf{R}^{\wedge} \mathbf{2}=$



[^0]:    ${ }^{1}$ If you have any comments, please contact Dr. Mircea Gheorghiu.

