Information Content Available Through NMR

ONTH AC NOMINUM.

ALC: N

We need to measure the NMR signals...

Tetramethylsilane (TMS) is our reference for ¹H, ¹³C and ²⁹Si. The chemical shift (denoted δ) varies in different chemical environments.

$$\delta = [(v_{obs} - v_{TMS}) / v_{TMS}] \times 10^{6}$$

Chemical shifts depend on the electronegativities of nearby atoms

Having 2n+2 π electrons in a ring allows for charge circulation

Image courtesy of the U.S. Geological Survey

We also want to know how much of each signal we have

NMR provides information on the relative amounts of chemically distinct molecular sites (integrals and intensities)

Quantitation requires...

Waiting five times the longest spin-lattice relaxation time T₁
M_z(t) = M₀ [1 - exp (-t / T₁)]

• The absence of any enhancement, such as that arising from decoupling

$$\eta = \gamma_X / (2 \gamma_A)$$

¹³C spectra provide useful intensity information

How do spins talk to each other?

Image courtesy of U.S. Air Force

Through-bond connectivity is revealed through J-couplings

The magnitude of J

- ¹J's (ca. 125-160 Hz for ¹H-¹³C, sometimes more, used in HMQC, HSQC, and INADEQUATE)
- ²J's (geminal couplings, 2-15 Hz)
- ³J's (vicinal couplings, 0-15 Hz),
- sometimes ⁴J's (0-4 Hz)
- and even ⁵J's (0-2 Hz)

Geometry controlling magnitude of ²J's and ³J's is well understood and expressed through the Karplus relationship

²J Karplus relationship

³J Karplus relationship

Measurable ⁴J's are found in rigid molecules

F1 (ppm)

Other important through-bond experiments:

¹H-¹H DQFCOSY

(Double Quantum Filtered COrrelation SpectroscopY)

and ¹³C-¹³C INADEQUATE

(Incredible Natural Abundance DEtection blah blah blah)

We can also detect interactions...

THROUGH SPACE

Through-space effects: the dipolar interaction gives us the nuclear Overhauser effect (NOE)

Consider a ¹H-¹³C spin pair at equilibrium

Now we irradiate (decouple) the ¹H transitions

The double quantum transition relaxes the fastest (sometimes)

¹H-¹H NOESY

(Nuclear Overhauser Effect SpectroscopY)

Those are the basic tools from which we choose

(Photo courtesy of JM, http://www.logodesignweb.com/stockphoto)

We start with assigning a molecule of known structure: ethyl nipecotate

Entry points

- Ethyl group
- Carbonyl carbon
- Methylenes α to N
- Lone methine @ 3

In simple problems: Following the identification of entry points, we use ${}^{3}J_{HH}$'s to assign ¹H's adjacent to those we already know using the qCOSY

In complex problems: Following the identification of entry points, we use ${}^{3-5}J_{HH}$'s and ${}^{2-5}J_{HC}$'s to assign spins

For six-membered rings, we normally assume a chair conformation, and so the dihedrals are either trans or gauche H_{1ax} H_{2eq} 5 (front) 4 (back)