Massachusetts Institute of Technology Organic Chemistry 5.512

April 15, 2005 Prof. Rick L. Danheiser

Unit 5

Stereocontrolled 1,2–Addition of Allylmetal Compounds to Carbonyl Groups

★ Introduction: Mechanism and Transition States

★ Substrate Control: Addition of Achiral Allylmetals to α -Chiral Aldehydes

★ Reagent Control: Addition of Chiral AllyImetals to Achiral Aldehydes

★ Reagent Control: Addition of Allylmetals to Achiral Aldehydes (w/ Chiral Lewis Acids)

Allylboron Compounds

Photograph removed due to copyright reasons.

H. C. Brown 1912-2004 See reviews previously cited and "Recent Advances in the Activation of Boron and Silicon Reagents for Stereocontrolled Allylation Reactions", Kennedy, J. W. J.; Hall, D. G. *Angew. Chem. Int. Ed.* **2003**, *42*, 4732

Allyltitanium Compounds

Reviews:

"Synthesis and Reactivity of Allyltitanium Derivatives" Szymoniak and Moise, C. In *Titanium and Zirconium in Organic Synthesis*, Marek, I., Ed.; Wiley-VCH, 2002, pp 451-474.

"Chiral Titanium Complexes for Enantioselective Addition of Nucleophiles to Carbonyl Groups" Duthaler, R. O.; Hafner, A. *Chem. Rev.* **1992**, *92*, 807

Photograph removed due to copyright reasons.

Dieter Seebach TADDOL Ligands

AllyIsilicon Compounds

See "Highly Diastereo- and Enantioselective Reagents for Aldehyde Crotylation" Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. *Org. Lett.* **2004**, *6*, 4375 and references cited therein "Origins of Stereoselectivity in Strain-Release Allylations" Zhang, X.; Houk, K. N.; Leighton, J. L. *Angew. Chem. Int. Ed.* **2005**, *44*, 938

AllyIstannanes

Photograph removed due to copyright reasons.

Keck, G. E.; Krishnamurthy *Org. Synth.* Coll. Vol. **10**, 632 A useful recent **review:** "BINOL: A Versatile Chiral Reagent" Brunel, J. M. *Chem. Rev.* **2005**, *105*, 857

Gary E. Keck

Allylmetal Showdown

Ph CHO Ph			
Method	Cost	Selectivity	Preparation (steps)
Roush	\$5	80:20	2 (Storable)
Carriera only non-enolizable)	\$14	80:20	0
Brown	\$14	98:2	1 (in situ)
Leighton (pseudoephedrine)	\$20	94:6	1 (Storable)
Keck	\$19	98:2	0
Duthaler	\$414	97:3	2 (Storable)