Massachusetts Institute of Technology
 Organic Chemistry 5.512

May 2, 2005
Prof. Rick L. Danheiser

Unit 9

Stereocontrolled Hydroboration and Dihydroxylation of Alkenes

* Substrate Control: 1,2-Asymmetric Induction in Hydroboration
\star Reagent Controlled Hydroboration
* Substrate Control: 1,2-Asymmetric Induction in Dihydroxylation

Reagent Controlled Dihydroxylation: Sharpless ADH Reaction

Background Reading

Carey and Sundberg (Part B) 4th Ed. (2001) Chapter 4 pp 226-241 (Hydroboration), Chapter 12 pp 757-762 (Dihydroxylation), and Chapter 12 pp 762-782 (Epoxidation - the next unit)

Review on Hydroboration

"Catalytic Asymmetric Hydroboration: Recent Advances and Applications in Carbon-Carbon BondForming Reactions" Crudden, C. M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695

Reviews on Asymmetric Dihydroxylation and Aminohydroxylation

"Catalytic Asymmetric Dihydroxylation: Discovery and Development" Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH, 2000, pp 357-398
"Recent Advances in Asymmetric Dihydroxylation and Aminohydroxylation" Bolm, C.; Hildebrand, J. P.; Muniz, K. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH, 2000, pp 398-428.

Sharpless Asymmetric Dihydroxylation

Review on Sharpless ADH

"Catalytic Asymmetric Dihydroxylation" Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483

Organic Syntheses Procedures

Oi, R.; Sharpless, K. B. Org. Synth. Coll. Vol. 9, 251 and McKee, B. H.; Gilheany, D. G.; Sharpless, K. B. Org. Synth. Coll. Vol. 9, 383

Retrons

Generally very good selectivity for E-disubstituted and trisubstituted alkenes (for either enantiomer)

Borderline to good selectivity for terminal alkenes and 1,1disubstituted alkenes

AD-mix $\alpha \quad(\mathrm{DHQ})_{2} \mathrm{PHAL}+\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}+\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $\$ 81.70 / 50 \mathrm{~g}$
AD-mix $\beta \quad(\mathrm{DHQD})_{2} \mathrm{PHAL}+\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}+\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$

Figures removed due to copyright reasons.

