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STATISTICAL THERMODYNAMICS 

Calculation of macroscopic thermodynamic results 

Entropically driven examples: 

Free expansion of a gas V2 

gas 
vacuum V1 

gas 

Lattice model for ideal gas translation: 
Molecular volume v, Total volume V 
All molecular positions have equal energy εtrans = 0 
All system microstates have equal energy Etrans = 0 

V1 
Calculate S = k ln Ω in each state 

V2Molecular degeneracy g = V/v  


System degeneracy Ω = gN/N! = (V/v)N/N!  


For expansion from volume V1 to V2, 


Ω ( )  V v N N!  
Δ =S kln Ω −  kln Ω = kln 2 = kln 2 

2 1 Ω V v  N N!  1 ( )  1 

Δ =S Nkln  V2 = nRln  V2 
V1 V1 

VShould look familiar! And Δ = Δ − Δ =H T S  2G −nRTln  
V1 

Entropy change is positive, free energy change is negative, as we expect. 



5.60 Spring 2008 Lecture #26-27 page 2 

Ideal gas mixture NA 

VA 

NB 

VB 

N = NA + NB 


V = VA + VB 


Assume same initial (p,T) for A & B ⇒ same (p,T) for mixture  
Assume equal molecular volumes & lattice cell sizes. 
Then initially 

(V v)NA (V v)NB 
BS = kln Ω +  kln Ω = kln Ω Ω = kln A 

1 A B A B N !  N !  A B 

After mixing: Count how many ways to distribute NA 

molecules of A and NB molecules of B among the (V/v) 
lattice sites 

As before, the number of ways to distribute N 

molecules among (V/v) sites is (V/v)N. 


To correct for indistinguishability, divide by NA!NB! 


So the final state entropy is  


V v( )N 

S2 = kln  Ω = kln  
N !N  !  A B 

( )  N 

− kln (  ) ( )  v NB ( )V v  
= kln V V

Δ =  −  S S2 S1 = kln 
V v  VA v NA VB 

NA 

(NA +NB ) NA NB 

= kln 
N !N !  N !  N !  V v V  v  V VBA B A B ( )A ( )  NB 

A
NA NB 

B 

Since the initial pressures are the same, the initial volumes must be in the ratio 
of the number of molecules, i.e. VA/V = NA/N = XA and VB/V = XB, so 

NA NB 

S  kln  V V  
= −klnX NA − klnX NB = −Nk X lnX  + X lnX (> 0) Δ =  NA NB A B ( A A B B )V VA B 

With a simple microscopic model we can derive the macroscopic entropy change! 
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Ideal liquid mixture 

Lattice model is different from gas because all the cells are occupied. Then in 
the pure liquid there is no disorder at all! 

SA = kln  ΩA = kln1  = 0 

+


SB = kln  ΩB = kln1  = 0 

Mixture: N molecules for N sites.  

First molecule has N choices, second (N – 1), etc.  

# ways to put the molecules into sites = N!  

Correct for overcounting by dividing by NA!NB! 

ΔSmix = Smix − (SA +SB ) = Smix = kln  Ωmix = kln  N! 
N !N  !  A B 

Stirling’s approximation  lnN! ≈ NlnN – N ⇒ 

ΔSmix = NklnN  − Nk  − (N klnN  − N k  +N klnN  −A A A B B N k  B ) 
= (N +N )klnN −N klnN −N klnN = N kln N 

+N kln N 
A B A A B B A BNA NB


= −Nk X lnX ( + X lnX )
A A B B 

Real liquid has additional states - positional disorder, molecular rotation, etc. – 
but these occur in both the pure and mixed liquids, so ΔSmix is dominated by the 
disorder in molecular positions that the lattice model describes reasonably well. 
*********************************************************************** 

Combinatorics: 
Simple example 
Mix 2 molecules A 
+ 3 molecules B 

How many distinct 
configurations Ω? 

Ω = 10 = 5!/2!3! 
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Energy & entropy changes 
We saw one example earlier, with 4-segment polymers.  

Molecular state: 

Energy ε: 0 εint εint εint 

Degeneracy g:  1 3 

We’ve redefined the zero of energy as the ground state energy. 
“Configurational” molecular partition function is 

−ε kT 0 kT  −εint kT −εint kT −εint kT qconf = ∑ e i,conf = e + e + e + e 
states


i


= g e−εi kT 0 kT  + 3e  −εint kT −ε kT int = e = 1 + 3e  ∑ εi 
energy levels 

εi 

For a solution of noninteracting polymer molecules,  

Q = qN = (1 + 3e−εint kT )N 

conf conf 

We can determine the thermodynamic properties: 

) = −  NkTln 1 ( + 3e )A = −kTlnQ = −NkTln 1 ( + 3e −ε int kT −βεint 
conf conf 

⎛ ∂ ⎛ ∂ln 1 + 3e −βε int ⎞ ε −βε intlnQ ⎞ ( ) 3 eUconf = −⎜ ∂β 
conf 

⎟ = −N⎜ ⎟ = N
+ 

int 
−βεint ⎝ ⎠V,N ⎜

⎝ 
∂β ⎟

⎠V,N 
1 3e  

Energy scales with N: molecules are not interacting with each other so total 
energy is just a sum of individual molecule energies.  
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Average energy per molecule is 

Uconf 3 eεint 
−βε int 

= =εconf N 1 3e  + −βε int 

∑εie
−βεi 

+ ε  e−βεint 

But we also know ε = ∑εi iP = i = 
0 3  int 

−βε - same result 
i q 1 3e+ int 

−βε int 

S Aconf + 
Uconf klnQ  − 

1 
⎜
⎛ ∂lnQ  conf ⎞ ( + 3e  −βε int ) N 3 eεint 

−βε intconf = −  
T T 

= conf T ⎝ ∂β ⎟
⎠V,N 

= Nkln  1  +
+
T 1 3e 


Also scales with N – sum over individual molecule entropy contributions 
Average molecular configurational entropy is 

−βεint εint 
−βεint 1 3 e  s = kln  1  ( + 3e  ) + 

T 1 3e  −βεint conf + 

In high-T (low-β) limit, it’s kln(4) as expected. In low-T limit, it’s kln(1) = 0.  

μ = ⎛
∂A ⎞ = −kT ⎛ ∂lnQ  ⎞ = −kTln 1 + 3e −βε int 

conf ⎜
⎝ ∂N ⎟⎠T,V 

⎜
⎝ ∂N ⎟⎠T,V 

( ) 

Chemical potential is just A per molecule, and A scales with N so it’s just A/N.  

⎛ ∂Uconf ⎞ 1 ⎛ ∂Uconf ⎞ N ∂ ⎛ 3 eεint 
−βεint ⎞


CVconf 
= ⎜ ∂ ⎟

⎠ 
= −  

kT  2 ⎜ ∂β  ⎟
⎠V,N 

= −  
kT  2 ∂β  

⎜ 
+ −βε int 

⎟
⎠
⎝ T V,N ⎝ ⎝ 1 3e 


3 Nε + −βεint ( −βεint − −βε int ( 3 int 
−βεint
(1 3e  ) −ε  inte ) e − ε  e )

= −  int


kT2 (1 3e  −βε int )2

+ 

Scales with N, so we can think of a configurational heat capacity per molecule.  

Complicated function, but its limits are understandable: 
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CVconf 
→ 0  as  T → 0 

εint 
Low-T 

At low T, all molecules are in the lowest state. If 
kT increases infinitesimally, all the molecules are 
still in the lowest state! So the configurational 0 kT 

limit 

energy Uconf doesn’t change! 

CVconf 
→ 0  as  T → ∞  

kT 

At high T, the molecules are equally distributed High-T 

among all the states. If kT increases, they are εint 
limit 

still equally distributed among all the states! So 0 
Uconf doesn’t change. 

The low-T limit CV → 0 is common to almost every degree of freedom since 
ultimately a temperature is reached at which only the lowest level is occupied.  

The high-T limit CV → 0 is characteristic of systems or degrees of freedom 
with a finite number of states, i.e. a maximum possible energy. In that case, 
ultimately a temperature is reached at which the equilibrium distribution is ~ 
equal probability of all the levels being occupied. This is the case for molecular 
configurations as discussed here and for spin states of nuclei and electrons.  




