MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Fundamental Equations, Absolute Entropy. and The Third Law

- Fundamental Equations relate functions of state to each other using $1^{\text {st }}$ and $2^{\text {nd }}$ Laws
$1^{\text {st }}$ law with expansion work: $d U=đ q-p_{\text {ext }} d V$

Use $2^{\text {nd }}$ law: $đ q^{\text {rev }}=T d S$

For a reversible process $p_{\text {ext }}=p$ and $d q=đ q^{\text {rev }}=T d S$

So......

This fundamental equation only contains state variables

Even though this equation was demonstrated for a reversible process, the equation is always correct and valid for a closed (no mass transfer) system, even in the presence of an irreversible process. This is because U, T, S, p, and V are all functions of state and independent of path.

AND The "best" or "natural" variables for U are $\underline{S \text { and } V \text {, }}$

$$
\star * U(S, V)
$$

** $U(S, V)$ **

From $\mathrm{dU}=\mathrm{TdS}-\mathrm{pdV} \Rightarrow * *\left(\frac{\partial \mathrm{U}}{\partial \mathrm{S}}\right)_{V}=\mathrm{T} ;\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{S}=-\mathrm{p}$

We can write similar equations for enthalpy

$$
\begin{aligned}
& H=U+p V \Rightarrow d H=d U+d(p V)=d U+p d V+V d p \\
& \Rightarrow * * \quad d H=T d S+V d p \\
& \text { inserting } d U=T d S-p d V
\end{aligned}
$$

The natural variables for H are then \underline{S} and p

$$
\star * H(S, p) * *
$$

From $\mathrm{dH}=\mathrm{TdS}+\mathrm{Vdp} \Rightarrow * *\left(\frac{\partial \mathrm{H}}{\partial \mathrm{S}}\right)_{\mathrm{p}}=\mathrm{T} ;\left(\frac{\partial \mathrm{H}}{\partial \mathrm{p}}\right)_{\mathrm{S}}=\mathrm{V}$

We can use these equations to find how S depends on T.
From $\mathrm{dU}=\mathrm{TdS}-\mathrm{pdV} \Rightarrow\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{1}{\mathrm{~T}}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{C_{\mathrm{V}}}{\mathrm{T}}$
From $\mathrm{dH}=\mathrm{TdS}+\mathrm{Vdp} \Rightarrow\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\frac{1}{\mathrm{~T}}\left(\frac{\partial \mathrm{H}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\frac{C_{\mathrm{p}}}{\mathrm{T}}$

- Absolute Entropies

Absolute entropy of an ideal gas
From $d U=T d S-p d V \Rightarrow d S=\frac{d U+p d V}{T}$
At constant $T, d U=0 \Rightarrow d S_{T}=\frac{p d V}{T}$
For an ideal gas, $p V=n R T \Rightarrow d S_{T}=\frac{n R d V}{V}$
At constant $T \quad d(p V)=d(n R T)=0 \Rightarrow p d V=-V d p$

So

$$
\mathrm{d} S_{\mathrm{T}}=-\frac{\mathrm{nRdp}}{\mathrm{p}}
$$

For an arbitrary pressure p,

$$
S(p, T)=S\left(p^{0}, T\right)-\int_{p^{0}}^{p} \frac{n R d p}{p}=S\left(p^{0}, T\right)-n R \ln \left(\frac{p}{p^{0}}\right)
$$

where p^{0} is some reference pressure which we set at 1 bar.
$\Rightarrow S(p, T)=S^{0}(T)-n R \operatorname{lnp} \quad$ (p in bar)

$$
\bar{S}(p, T)=\bar{S}^{\circ}(T)-R \ln p \quad(p \text { in bar })
$$

But to finish, we still need $\bar{S}^{\circ}(T)$!

Suppose we had $\bar{S}^{\circ}(0 \mathrm{~K})$ (standard molar entropy at 0 Kelvin)

Then using $\left(\frac{\partial S}{\partial T}\right)_{p}=\frac{C_{p}}{T}$ we should be able to get $\bar{S}^{\circ}(T)$

Consider the following sequence of processes for the substance A :

$$
\begin{aligned}
& A(s, O K, 1 b a r)=A\left(s, T_{m}, 1 b a r\right)=A\left(l, T_{m}, 1 b a r\right)=A\left(l, T_{b}, 1 b a r\right) \\
&=A\left(g, T_{b}, 1 b a r\right)=A(g, T, 1 b a r) \\
& \bar{S}(T, 1 b a r)=\bar{S}^{0}(O K)+\int_{0}^{T_{m}} \frac{\bar{C}_{p}(s) d T}{T}+\frac{\Delta \bar{H}_{\text {fus }}}{T_{m}}+\int_{T_{m}}^{T_{b}} \frac{\bar{C}_{p}(\ell) d T}{T}+\frac{\Delta \bar{H}_{\text {vap }}}{T_{b}}+\int_{T_{b}}^{T} \frac{\bar{C}_{p}(g) d T}{T} \\
& S^{\circ}(T) \uparrow \quad \Delta S=\int \frac{C_{p} d T}{T}
\end{aligned}
$$

Since ΔS^{0} is positive for each of these processes, the entropy must have its smallest possible value at 0 K . If we take $\overline{\mathrm{S}}^{\circ}(0 \mathrm{~K})=$ zero for every pure substance in its crystalline solid state, then we could calculate the entropy at any other temperature.

This leads us to the Third Law!!!

THIRD LAW:

First expressed as Nernst's Heat Theorem:

- Nernst (1905): As $T \rightarrow 0 K, \Delta S \rightarrow 0$ for all isothermal processes in condensed phases

More general and useful formulation by M. Planck:

- Planck (1911): As $T \rightarrow 0 K, S \rightarrow 0$ for every chemically homogeneous substance in a perfect crystalline state

Justification:
(1) It works!
(2) Statistical mechanics (5.62) allows us to calculate the entropy and indeed predicts $\overline{\mathrm{S}}^{\circ}(0 \mathrm{~K})=0$.

This leads to the following interesting corollary:

It is impossible to decrease the temperature of any system to $\mathrm{T}=0 \mathrm{~K}$ in a finite number of steps

How can we rationalize this statement?
Recall the fundamental equation, $d U=T d S-p d V$
$d U=C_{v} d T \quad$ For 1 mole of ideal gas, $P=R T / V$
so $\quad C_{v} d T=T d S-(R T / V) d V$

$$
d S=C_{v} d(\ln T)+R d(\ln V)
$$

For a spontaneous adiabatic process which takes the system from T_{1} to a lower temperature T_{2},
$\Delta S=C_{V} \ln \left(T_{2} / T_{1}\right)+R \ln \left(V_{2} / V_{1}\right) \geq 0$
but if $T_{2}=0, C_{v} \ln \left(T_{2} / T_{1}\right)$ equals minus infinity!
Therefore $R \ln \left(V_{2} / V_{1}\right)$ must be greater than plus infinity, which is impossible. Therefore no actual process can get you to $T_{2}=0 \mathrm{~K}$.

But you can get very very close!

In Prof. W. Ketterle's experiments on "Bose Einstein Condensates" (MIT Nobel Prize), atoms are cooled to nanoKelvin temperatures ($T=10^{-9} \mathrm{~K}$) ... but not to 0 K !

Another consequence of the Third Law is that
It is impossible to have $T=0 K$.
How can we rationalize the alternate statement?

Consider the calculation of S starting at $T=O K$
$S(s, T, 1$ bar $)=\int_{0}^{T C_{p}(s) d T} \frac{T}{T}$
to prevent a singularity at $\mathrm{T}=0, \mathrm{C}_{\mathrm{p}} \rightarrow 0$ as $\mathrm{T} \rightarrow 0 \mathrm{~K}$
in fact, experimentally $C_{p}=\gamma T+A T^{3}+\ldots$

That is, the heat capacity of a pure substance goes to zero as T goes to zero Kelvin and this is experimentally observed.

Combining the above with $d T=đ q_{p} / C_{p}$, at $T=0$ any infinitesimally small amount of heat would result in a finite temperature rise.

In other words, because $C_{p} \rightarrow 0$ as $T \rightarrow 0 K$, the heat $đ q_{p}$ needed to achieve a temperature rise $d T,\left(đ q_{p}=C_{p} d T\right)$ also goes to zero at 0 K . If you somehow manage to make it to 0 K , you will not be able to maintain that temperature because any stray heat from a warmer object nearby will raise the temperature above zero, unless you have perfect thermal insulation, which is impossible.

- Some apparent violations of the third law (but which are not!)

Any disorder at $T=0 K$ gives rise to $S>0$

- For example in mixed crystals
$\Delta S_{\text {mix }}=-n R\left[X_{A} \ln X_{A}+X_{B} \ln X_{B}\right]>0 \quad$ Always !!! Even at $T=O K$
But a mixed crystal is not a pure substance, so the third law is not violated.
- Any impurity or defect in a crystal also causes $S>0$ at 0 K
- Any orientational or conformational degeneracies such is in a molecular crystal causes $S>0$ at 0 K , for example in a carbon monoxide crystal, two orientations are possible:

CO CO CO CO CO COCO
CO CO CO CO COOCCO
CO CO COOCCOCOCO
COCO CO CO COCOCO

