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Fundamental Equations, Absolute Entropy,

and The Third Law


•	 Fundamental Equations relate functions of state to each other using 
1st and 2nd Laws 

1st	 law with expansion work: dU = đq - pextdV 

need to express đq in 
terms of state variables

 because đq is path dependent 

Use 2nd law: đqrev = TdS 

For a reversible process  pext = p and đq = đqrev =TdS 

So…… **  dU = TdS – pdV ** 

This fundamental equation only contains state variables 

Even though this equation was demonstrated for a reversible 
process, the equation is always correct and valid for a closed (no 
mass transfer) system, even in the presence of an irreversible 
process. This is because U, T, S, p, and V are all functions of 
state and independent of path. 

AND The “best” or “natural” variables for U are S and V, 

**  U(S,V) ** 



_______________ 
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**  U(S,V) ** 

⎛ ∂U ⎞ ⎛ ∂U ⎞From dU = TdS – pdV  ⇒  ** ⎜ ⎟ = T  ; ⎜ ⎟ = −p ** 
⎝ ∂S ⎠V ⎝ ∂V ⎠S 

We can write similar equations for enthalpy 

H = U + pV ⇒   dH = dU + d(pV) = dU + pdV + Vdp 

inserting  dU = TdS – pdV   

⇒ **  dH = TdS + Vdp ** 

The natural variables for H are then S and p 

**  H(S,p) ** 

⎛ ∂H ⎞ ⎛ ∂H ⎞From dH = TdS + Vdp  ⇒  ** ⎜ ⎟ = T  ; ⎜ ⎟ = V ** 
⎝ ∂S ⎠p ⎝ ∂p ⎠S 

We can use these equations to find how S depends on T. 

⎛ ∂S ⎞ 1 ⎛ ∂U ⎞ CVFrom dU = TdS – pdV ⇒ ⎜ ⎟ = ⎜ ⎟ = 
⎝ ∂T ⎠V T ⎝ ∂T ⎠V T 

⎛ ∂S ⎞ 1 ⎛ ∂H ⎞ CpFrom dH = TdS + Vdp ⇒ ⎜ ⎟ = ⎜ ⎟ = 
⎝ ∂T ⎠p T ⎝ ∂T ⎠p T 
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• Absolute Entropies 

Absolute entropy of an ideal gas


dU + pdV
From dU = TdS – pdV ⇒ dS = 
T 

pdVAt constant T, dU=0  ⇒ dST = 
T


For an ideal gas, pV = nRT ⇒ dST = 
nRdV


V

At constant T   d(pV) = d(nRT) = 0 ⇒  pdV = -Vdp 


nRdpdST = −So p 

For an arbitrary pressure p, 

o oS(p,T) = S(p ,T) − ∫p

p
o
nRdp 

= S(p ,T) − nRln⎜⎜
⎛ p

o ⎟⎟
⎞ 

p ⎝ p ⎠ 
where po is some reference pressure which we set at 1 bar. 

⇒  S(p,T) = So(T) – nR lnp (p in bar) 

S(p,T) = S o(T) − Rln p (p in bar) 

But to finish, we still need S o(T)  ! 

Suppose we had S o(0K)  (standard molar entropy at 0 Kelvin) 

Then using ⎜
⎛ ∂S 

⎟
⎞ = 

Cp we should be able to get S o(T)
⎝ ∂T ⎠p T 
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     Consider the following sequence of processes for the substance A: 

A(s,0K,1bar) = A(s,Tm,1bar) = A(ℓ,Tm,1bar) = A(ℓ,Tb,1bar) 
= A(g,Tb,1bar) = A(g,T,1bar) 

S(T,1bar) = S o(OK) + 
Tm Cp(s)dT 

+
ΔHfus + 

Tb Cp(A)dT 
+

ΔHvap + 
T Cp(g)dT 

∫0 T Tm 
∫Tm T Tb 

∫Tb T 

So(T) CpdT 
ΔS = ∫ T 

ΔHvap 
Liquid boils, ΔS = 

T 

ΔHfus 
Solid melts, ΔS = 

T 

0 
T 

Since ΔS0 is positive for each of these processes, the entropy 
must have its smallest possible value at 0 K. If we take S o(0K) = 
zero for every pure substance in its crystalline solid state, then 
we could calculate the entropy at any other temperature. 

This leads us to the Third Law !!! 


THIRD LAW: 

First expressed as Nernst's Heat Theorem: 
• Nernst (1905): As T → 0 K , ΔS → 0 for all isothermal  
processes in condensed phases 
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More general and useful formulation by M. Planck: 
• Planck (1911):  As T → 0 K , S → 0 for every chemically 

homogeneous substance in a perfect crystalline state 

Justification: 
c It works! 
d Statistical mechanics (5.62) allows us to calculate the 

   entropy and indeed predicts S o (0K)  = 0. 

This leads to the following interesting corollary: 

It is impossible to decrease the temperature of any system to 
T = 0 K in a finite number of steps 

How can we rationalize this statement?


Recall the fundamental equation, dU = T dS – p dV 


dU = Cv dT For 1 mole of ideal gas, P = RT/V 

so Cv dT = T dS – (RT/V) dV 

  dS = Cv d (ln T) + R d (ln V) 

For a spontaneous adiabatic process which takes the system 
from T1 to a lower temperature T2, 

ΔS = Cv ln (T2/T1) + R ln (V2/V1) ≥ 0 

 but if T2 = 0, Cv ln (T2/T1) equals minus infinity ! 

Therefore R ln (V2/V1) must be greater than plus infinity, which 
is impossible. Therefore no actual process can get you to T2 = 0 K. 

But you can get very very close! 
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In Prof. W. Ketterle's experiments on "Bose Einstein 
Condensates" (MIT Nobel Prize), atoms are cooled to nanoKelvin 
temperatures (T = 10-9 K) … but not to 0 K ! 

Another consequence of the Third Law is that  

It is impossible to have T=0K. 

How can we rationalize the alternate statement? 

Consider the calculation of S starting at T=0K 

S(s,T,1bar) = ∫0
TCp(s

T
)dT 

to prevent a singularity at T=0, Cp → 0 as T → 0 K 

in fact, experimentally Cp = γT + AT3 + ... 

That is, the heat capacity of a pure substance goes to zero as T goes 
to zero Kelvin and this is experimentally observed. 

Combining the above with dT = đqp/Cp , at T=0 any infinitesimally 
small amount of heat would result in a finite temperature rise. 

In other words, because Cp → 0 as T → 0 K, the heat đqp needed to 
achieve a temperature rise dT, (đqp=CpdT) also goes to zero at 0 K. If 
you somehow manage to make it to 0 K, you will not be able to maintain 
that temperature because any stray heat from a warmer object 
nearby will raise the temperature above zero, unless you have perfect 
thermal insulation, which is impossible. 
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• Some apparent violations of the third law (but which are not !) 

Any disorder at T = 0 K gives rise to S > 0 

•	 For example in mixed crystals 

ΔSmix = −nR[XA ln XA + XB ln XB ] > 0 Always !!! Even at T=0K 
But a mixed crystal is not a pure substance, so the third law 

is not violated. 

•	 Any impurity or defect in a crystal also causes S > 0 at   
0 K 

•	 Any orientational or conformational degeneracies such is 
in a molecular crystal causes S > 0 at 0 K, for example in 
a carbon monoxide crystal, two orientations are possible: 

C O C O C O C O C O C O C O 

C O C O  C O C O C O O C C O 


C O C O C O O C C O C O C O 

C O C O  C O C O C O C O C O 





