MIT OpenCourseWare http://ocw.mit.edu

5.60 Thermodynamics & Kinetics Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

<u>Two-Component Phase Equilibria</u>

<u>Goal</u>: Understand & predict effects of mixing of substances on vapor pressure, boiling point, freezing point, etc.

Binary liquid-gas mixtures (non-reacting):

A(g), у _л B(g), у _в =1-у _л	(T,p)	Total # of variables: 4 (T, p, x _A , y _A)
$\sim\sim\sim$	\sim	Constraints due to coexistence: 2
A(liq), x _A B(liq), x _B =1-x _A		$\mu_A(\ell) = \mu_A(g)$
B(liq), x _B =1-x _A		μ _B (ℓ) = μ _B (g)

independent variables F = 4 - 2 = 2

Only 2! e.g. knowing (T,p) uniquely determines the compositions in the liquid & gas phases

Generalization: **Gibbs phase rule** gives # independent variables needed to describe a multi-component system where different phases coexist in equilibrium

F = C - P + 2

F = # degrees of freedom (independent variables)
C = # components
P = # phases

How do we get this?

Suppose a system has C components and P phases. What are all the variables? First, T and p.

page 2

Then in each phase " α ", each component is specified by its mole fraction, with the constraint that $\sum_{i=1}^{C} x_i^{(\alpha)} = 1$.

So the composition of each phase is specified by (C - 1) variables. With P phases, we have P(C - 1) variables. Trackeding T and p, the total # variables is P(C - 1) + 2

Including T and p, the total # variables is P(C - 1) + 2.

Now add constraints due to phase equilibria: Chemical potential of each component is the same in all the phases. e.g. for component "i", $\mu_i^{(1)} = \mu_i^{(2)} = \dots + \mu_i^{(P)} \implies P - 1$ constraints For C components, it's C(P - 1) constraints altogether

So total # independent variables is F = P(C - 1) + 2 - C(P - 1)F = C - P + 2 Gibbs phase rule

For 1-component system: F = 3 - P $P = 1 \implies F = 2$ Can vary freely in (T,p) plane $P = 2 \implies F = 1$ Can vary along coexistence curve T(p) $P = 3 \implies F = 0$ No free variables at triple point (T_t,p_t) $P = 4 \implies$ Impossible! Can't have 4 phases in equilibrium

Raoult's Law and Ideal Solutions

 $p_A^* = vapor \ pressure \ of \ pure \ A \ at \ temperature \ T$

Raoult's Law assumes a linear dependence

Solvent and solute do not interact, like in mixture of ideal gases

$$p_A = x_A p_A^* = (1 - x_B) p_A^*$$

<u>Application: Vapor pressure lowering</u> (our first "colligative" property)

A(g)
$$p_A$$
 $p_A^* - p_A = p_A^* - x_A p_A^* = (1 - x_A) p_A^* = x_B p_A^* > 0$ A(liq) +
impuritiesSo $p_A < p_A^*$
Vapor pressure is lowered in the mixture

Now let's consider both A and B volatile

"Ideal" solutions = both components obey Raoult's Law

The diagram above shows the composition of the <u>liquid</u> phase It does not provide information about the gas phase composition

The gas phase is described by y_A or y_B . If T and x_A are given, then y_A and y_B are fixed (by Gibbs phase rule). That is, if T and the composition of the liquid phase are known, then the composition of the gas phase is determined.

So how do we get y_A ?

 $p_{A} = y_{A}p \qquad (Dalton's Law)$ $p_{A} = x_{A}p_{A}^{*} \qquad \text{and} \qquad p_{B} = x_{B}p_{B}^{*} = (1 - x_{A})p_{B}^{*} \qquad (Raoult's Law)$ $y_{A} = \frac{p_{A}}{p} = \frac{p_{A}}{p_{A} + p_{B}} = \frac{x_{A}p_{A}^{*}}{x_{A}p_{A}^{*} + (1 - x_{A})p_{B}^{*}}$ $y_{A} = \frac{x_{A}p_{A}^{*}}{p_{B}^{*} + (p_{A}^{*} - p_{B}^{*})x_{A}}$ Inverting this expression $\Rightarrow x_{A} = \frac{y_{A}p_{B}^{*}}{p_{A}^{*} + (p_{B}^{*} - p_{A}^{*})y_{A}}$ Combining these two results $\Rightarrow p = \frac{p_{A}}{y_{A}} = \frac{x_{A}p_{A}^{*}}{y_{A}}$

or
$$p = \frac{p_{A}^{*}p_{B}^{*}}{p_{A}^{*} + (p_{B}^{*} - p_{A}^{*})y_{A}}$$

This is summarized in the following diagram:

Combining both diagrams into one plot:

This allows us to see the compositions of both liquid and gas phases

If we know the composition of one phase at a given T, we can determined the composition of the other phase from the diagram