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Two-Component Phase Equilibria

Goal: Understand & predict effects of mixing of substances on vapor 

pressure, boiling point, freezing point, etc. 

Binary liquid-gas mixtures (non-reacting): 

Total # of variables: 4 
  (T,  p,  xA, yA) 

Constraints due to coexistence: 2 
µA(A) = µA(g) 
µB(A) = µB(g) 

# independent variables  F = 4 – 2 = 2 
Only 2! e.g. knowing (T,p) uniquely determines the compositions in the 
liquid & gas phases 

Generalization: Gibbs phase rule gives # independent variables 
needed to describe a multi-component system where different 
phases coexist in equilibrium 
      F = C – P + 2 


F ≡ # degrees of freedom (independent variables) 

C ≡ # components

P ≡ # phases


How do we get this?  


Suppose a system has C components and P phases.  

What are all the variables?  

First, T and p. 
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Then in each phase “α”, each component is specified by its mole 
C 

( )fraction, with the constraint that  ∑xi 
α = 1 . 

i =1 

So the composition of each phase is specified by (C – 1) variables. 

With P phases, we have P(C – 1) variables.  

Including T and p, the total # variables is P(C – 1) + 2.


Now add constraints due to phase equilibria:  

Chemical potential of each component is the same in all the phases.  


( )e.g. for component “i”, µi
(1) = µi

(2) = Kµi
P ⇒  P – 1 constraints 

For C components, it’s C(P – 1) constraints altogether  

So total # independent variables is F = P(C – 1) + 2 - C(P – 1) 
F = C – P + 2 Gibbs phase rule 

For 1-component system: F = 3 – P 
P = 1 ⇒ F = 2    Can vary freely in (T,p) plane 
P = 2 ⇒ F = 1    Can vary along coexistence curve T(p) 
P = 3 ⇒ F = 0 No free variables at triple point (Tt,pt) 
P = 4 ⇒ Impossible! Can’t have 4 phases in equilibrium 

Raoult’s Law and Ideal Solutions 

“A” is a volatile solvent (e.g. water) 

“B” is a nonvolatile solute (e.g. antifreeze) 


pA* ≡ vapor pressure of pure A at temperature T 
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Raoult’s Law assumes a linear dependence 
Solvent and solute do not interact, like in mixture of ideal gases   

pA = xApA* = (1-xB)pA* 

Application: Vapor pressure lowering (our first “colligative” property) 

pA* - pA = pA* - xApA* = (1 - xA)pA* = xBpA* > 0 

So pA < pA* 
Vapor pressure is lowered in the mixture 

Now let’s consider both A and B volatile

 pA = xApA* and pB = xBpB* 

   p  =  pA + pB = xApA* + xBpB* 

    (xA + xB = 1) 

“Ideal” solutions ≡ both components obey Raoult’s Law 

The diagram above shows the composition of the liquid phase 
It does not provide information about the gas phase composition 
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The gas phase is described by yA or yB. If T and xA are given, then yA 

and yB are fixed (by Gibbs phase rule). That is, if T and the 
composition of the liquid phase are known, then the composition of 
the gas phase is determined. 

So how do we get yA? 

pA = yAp (Dalton’s Law) 

pA = xApA* and pB = xBpB* = (1 –xA)pB* (Raoult’s Law) 

∗ p x p  A pA A AyA = = = ∗ ∗ p p + p  x p  + (1 − x ) pA B A A A B 
∗ x pA AyA = 

p ∗ + ( pA 
∗ − p ∗ )xAB B 

∗ y pInverting this expression ⇒ x = A B  
A ∗ ∗ ∗ p + (p − p )yA B A A 

∗ x pACombining these two results  ⇒ p = 
pA = A 

yA yA 
∗ ∗ p pA B  

∗ ∗ ∗
or p = 

p + (p − p )yA B A A 

This is summarized in the following diagram: 
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Combining both diagrams into one plot: 

This allows us to see the compositions of both liquid and gas phases 

If we know the composition of one phase at a given T, we can 
determined the composition of the other phase from the diagram 




