MIT OpenCourseWare http://ocw.mit.edu

5.60 Thermodynamics & Kinetics Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

<u>Two-Component Phase Equilibria III</u> <u>Ideal and Non-Ideal Solutions</u>

Free energy change ΔG_{mix} in ideal solutions

$$\Delta G$$

$$A (liq) B (liq) \Delta G$$

$$A + B (liq)$$

$$A + B (liq)$$

$$G_1(\ell) = n_A x_A \mu_A^*(\ell) + n_B x_B \mu_B^*(\ell)$$

$$G_2(\ell) = n_A x_A \mu_A^{mix}(\ell) + n_B x_B \mu_B^{mix}(\ell)$$

$$\Delta G_{mix} = G_2(\ell) - G_1(\ell)$$

$$= n x_A \left[\mu_A^*(\ell) + RT \ln x_A \right] + n x_B \left[\mu_B^*(\ell) + RT \ln x_B \right] - n x_A \mu_A^*(\ell) - n x_B \mu_B^*(\ell)$$

$$= n x_{A} \lfloor \mu_{A}^{*}(\ell) + R I \ln x_{A} \rfloor + n x_{B} \lfloor \mu_{B}^{*}(\ell) + R I \ln x_{B} \rfloor - n x_{A} \mu_{A}^{*}(\ell) - n x_{B} \mu_{A}^{*}(\ell) - n x_{$$

Purely entropic, as in gas mixture

$$G = Vdp - SdT$$

$$\Delta S_{mix} = -\left(\frac{\partial \Delta G_{mix}}{\partial T}\right)_{p} = -nR(x_{A} \ln x_{A} + x_{B} \ln x_{B})$$

$$\Delta H_{mix} = \Delta G_{mix} + T\Delta S_{mix} = 0$$

No enthalpy change, all of ΔG is due to entropy of mixing

Change in volume ΔV_{mix}

$$\Delta \mathbf{V}_{mix} = \left(\frac{\partial \Delta \boldsymbol{G}_{mix}}{\partial \mathbf{p}}\right)_{\mathrm{T}} = \mathbf{0}$$

No volume change, just like ideal gas.

Non-Ideal Solutions:

In reality, molecules interact:

This difference determines how solutions depart from ideality.

I. Positive Deviations: $\Delta u > 0$ (most common)

Mixing is <u>energetically</u> not favorable in liquid phase.

$$\Delta H = \Delta U + \Delta (PV) \approx \Delta U$$

$$\Delta \boldsymbol{G}_{mix} = \frac{n}{4} \Delta \boldsymbol{u} + nRT \left(\boldsymbol{x}_{A} \ln \boldsymbol{x}_{A} + \boldsymbol{x}_{B} \ln \boldsymbol{x}_{B} \right) > \Delta \boldsymbol{G}_{mix} \left(\text{ideal} \right)$$

e.g. acetone & carbon disulphide

$$CH_{3}$$

$$C = O + S = C = S$$

$$CH_{3}$$

$$B$$

 \Rightarrow vapor pressure is higher than expected by Raoult's Law

II. Negative Deviations: $\Delta u < 0$

e.g. acetone & chloroform

Mixing is energetically favorable in liquid phase.

Ideal Dilute Solutions and Henry's Law:

Non-ideal solutions are difficult to describe completely

 \Rightarrow Describe limits $x_B \rightarrow 1$ and $x_B \rightarrow 0 \Rightarrow$ "Ideal Dilute Solution"

I. $x_{C52} = x_B \rightarrow 1$ (B is the "solvent")

Then Raoult's Law applies for CS2

 CS_2 molecules see mostly other CS_2 molecules

$$\mathbf{p}_{\mathcal{CS}_2} = \mathbf{x}_{\mathcal{CS}_2} \mathbf{p}_{\mathcal{CS}_2}^{\star}$$

II. $x_B \rightarrow 0$ (B is the "solute")

Then Henry's Law applies:
$$p_{CS_2} = x_{CS_2}K_{CS_2}$$
 $p_B = x_BK_B$

Henry's Law constant

 K_B = Henry's Law constant, <u>depends on the solvent/solute mixture</u> and the temperature.

Labeled just K_B , even though it depends on A also.

Ideal dilute solution:

Solvent, e.g. A: $x_A \sim 1 \implies$ Raoult's Law $p_A = x_A p_A^*$ Solute, e.g. B: $x_B \sim 0 \implies$ Henry's Law $p_B = x_B K_B$

Total phase diagram:

