MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Colligative Properties

These are properties of solutions in the dilute limit, where there is a solvent " A " and a solute " B " where n_{A} >> n_{B}.

These properties are a direct result of $\mu_{A}^{\text {mix }}(\ell, T, p)<\mu_{A}^{\text {pure }}(\ell, T, p)$

Use two measures of concentration:
a. Mole Fraction: $x_{B}=n_{B} /\left(n_{A}+n_{B}\right) \sim n_{B} / n_{A}$
b. Molalility: $m_{B}=($ moles solute $) /(\mathrm{kg}$ solvent $)=n_{B} /\left(n_{A} M_{A}\right)$ Where M_{A} is the mass in kg of one mole of solvent.

There are FOUR Colligative Properties:

1. Vapor pressure lowering:

$$
\Delta p_{A}=p_{A}-p_{A}^{*}=-x_{B} p_{A}^{*}
$$

2. Boiling point elevation:

$$
\begin{gathered}
\Delta T_{b}=T_{b}-T_{b}^{*}=K_{b} m_{B} \\
K_{b}=\frac{M_{A} R\left(T_{b}^{*}\right)^{2}}{\Delta H_{\text {vap }}}
\end{gathered}
$$

3. Freezing point depression:

$$
\begin{gathered}
\Delta T_{f}=T_{f}-T_{f}^{*}=-K_{f} m_{B} \\
K_{f}=\frac{M_{A} R\left(T_{f}^{*}\right)^{2}}{\Delta H_{f}}
\end{gathered}
$$

4. Osmotic pressure:

$$
\pi=R T \tilde{c}
$$

where $\tilde{c}=\frac{n_{B}}{V}$ is concentration of solute

Let's go through these one at a time:

1. Vapor pressure lowering: This is just Raoult's Law.

$$
p_{A}=x_{A} p_{A}^{*}=\left(1-x_{B}\right) p_{A}^{*} \quad \text { So } \quad \Delta p_{A}=p_{A}-p_{A}^{*}=-x_{B} p_{A}^{*}(<0)
$$

2. Boiling point elevation:

Let's derive this. Start with

$$
\mu_{A}(l, T, p)=\mu_{A}(g, T, p)
$$

So,

$$
\mu_{A}^{*}(\ell, T, p)+R T \ln x_{A}=\mu_{A}(g, T, p)
$$

And

$$
\ln x_{A}=\frac{1}{R T}\left[\mu_{A}(g, T, p)-\mu_{A}^{*}(l, T, p)\right]=\frac{\Delta \bar{G}_{\text {vap }}}{R T}
$$

But $\ln x_{A}=\ln \left(1-x_{B}\right) \sim-x_{B}=-n_{B} /\left(n_{A}+n_{B}\right) \sim-n_{B} / n_{A}=-\left(M n_{B}\right) /\left(M n_{A}\right)$
Where M is the total mass of A,
So, $\ln x_{A} \sim m_{B} M_{A}$, where M_{A} is the molar mass of A.
Putting it all together then, $\quad m_{B}=\frac{-\Delta \bar{G}_{\text {vap }}}{M_{A} R T}$
But we need ΔT in there!
$\ldots \quad\left(\frac{\partial m_{B}}{\partial T}\right)_{p}=\frac{-1}{M_{A} R}\left(\frac{\partial\left(\Delta \bar{G}_{\text {vap }} / T\right)}{\partial T}\right)_{p}=\frac{-\Delta \bar{H}_{\text {vap }}}{M_{A} R T^{2}}$
which gives us $\delta T=\frac{M_{A} R T^{2}}{\Delta \bar{H}_{\text {vap }}} \delta m_{B}$

If $\delta m_{B}=m_{B}-0\left(\right.$ mixed - pure) and m_{B} is very small

Then

$$
\delta T=T_{b}-T_{b}^{*}=\frac{M_{A} R\left(T_{b}^{*}\right)^{2}}{\Delta \bar{H}_{\text {vap }}} m_{B}=K_{b} m_{B}
$$

3. Freezing point depression:

Same arguments as above, replacing

$$
\begin{aligned}
& \Delta G_{\text {vap }} \text { with }-\Delta G_{f} \\
& \Delta H_{\text {vap }} \text { with }-\Delta H_{f} \\
& T_{b} \text { with } T_{f} \\
& K_{b} \text { with } K_{f}
\end{aligned}
$$

4. Osmotic Pressure:

The pressures at points:

$$
\begin{aligned}
& \beta: \quad p=p_{e x t}+l_{\rho g} \\
& \alpha: \quad p+\pi=p_{e x t}+l \rho g+h \rho g
\end{aligned}
$$

At equilibrium:

$$
\mu_{A}(\ell, \mathbf{p}+\pi, T)=\mu_{A}^{*}(\ell, \mathbf{p}, \mathrm{~T})
$$

Using Raoult's Law: $\quad R T \ln x_{A}+\mu_{A}^{*}(\ell, p+\pi, T)-\mu_{A}^{*}(\ell, p, T)=0$
At constant $T: \quad d G=V d p$, or $d \mu_{A}^{*}=\bar{V}_{A}^{*} d p$

Integrating...

$$
\mu_{A}^{*}(\ell, p+\pi, T)-\mu_{A}^{*}(\ell, p, T)=\int_{p}^{p+\pi} \bar{V}_{A}^{*} d p=\bar{V}_{A}^{*} \pi
$$

(this assumed an incompressible liquid, where volume does not depend on p)

So then $R T \ln x_{A}+\bar{V}_{A}^{*} \pi=0$

Again using $\ln x_{A} \sim-n_{B} / n_{A}$
Then $\operatorname{RT}\left(-n_{B} / n_{A}\right)+\left(V_{A} / n_{A}\right) \pi=0$
But $V_{A} \sim V_{A}+V_{B}=V \quad\left(V_{B} \ll V_{A}\right)$
So finally,

$$
\pi V=R T_{n}
$$

This is the Van't Hoff Equation. It looks like the ideal gas law!
If we replace $\tilde{c}=n_{B} / V$ in the Van't Hoff Eq., then we get the osmotic pressure relation:

$$
\pi=\mathrm{RT} \tilde{c}
$$

