MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

STATISTICAL MECHANICS

Goal of Statistical Mechanics: to describe macroscopic, thermodynamic properties in terms of microscopic atomic \& molecular properties

Properties of a system can be described at two levels:

1) Macroscopic thermodynamic description e.g. $p, V, n, C, H, A, G, \ldots .$.
2) Microscopic description

Specify the state of each molecule!
Use classical or quantum mechanics More than 10^{23} variables! And need to update them every 10^{-15} s or so!

Either classical or quantum description is impractical. Statistical mechanics describes macroscopic mechanics in statistical terms, i.e. in terms of "average" or "most probable" results.

Probability of system in a state with given energy

What is functional form?
For independent energies ε_{i} and ε_{j} the joint probability should be the product:

$$
P_{i j}\left(\varepsilon_{i}+\varepsilon_{j}\right)=P_{i}\left(\varepsilon_{i}\right) P_{j}\left(\varepsilon_{j}\right)
$$

Suggests exponential form $P_{i j}\left(\varepsilon_{i}+\varepsilon_{j}\right) e^{C\left(\varepsilon_{i}+\varepsilon_{j}\right)}=e^{\varepsilon_{\varepsilon_{i}}} e^{\varepsilon_{\varepsilon_{j}}} \quad$ ($C \equiv$ constant)

We expect high-energy states to be less probable than low-energy states, and that they become more probable at high T, i.e. ratio of ε_{i} to T is what matters.

Suggests form $\quad P_{i}\left(\varepsilon_{i}\right) \sim e^{-C \varepsilon_{i} / T} \quad(C \equiv$ constant $>0)$
Or more conventionally $\quad P_{i}\left(\varepsilon_{i}\right) \propto e^{-\varepsilon_{i} / k T}$ Boltzmann probability distribution
where $k=R / N_{A}=1.38 \times 10^{-16} \mathrm{erg} / \mathrm{K}$ is the Boltzmann constant

For two states i and j with energies ε_{i} and ε_{j}, the relative probability is

$$
\frac{P_{i}}{P_{j}}=\frac{e^{-\varepsilon_{i} / k T}}{e^{-\varepsilon_{j} / k T}}=e^{-\left(\varepsilon_{i}-\varepsilon_{j}\right) / k T}
$$

To get absolute probabilities (not just relative), write

$$
P_{i}\left(\varepsilon_{i}\right) \propto e^{-\varepsilon_{i} / k T}=a e^{-\varepsilon_{i} / k T}
$$

Sum of probabilities for all the states must equal 1:

$$
\begin{array}{ll}
\sum_{i} P_{i}=1=a \sum_{i} e^{-\varepsilon_{i} / k T} & \Rightarrow \quad a=\frac{1}{\sum_{i} e^{-\varepsilon_{i} / k T}} \\
\Rightarrow \quad P_{i}=\frac{e^{-\varepsilon_{i} / k T}}{\sum_{i} e^{-\varepsilon_{i} / k T}} \quad \text { probability of being in state } i
\end{array}
$$

For a whole system or assembly of molecules, in a particular system state i (specified by indicating the state of each and every molecule) with energy E_{i} :

$$
P_{i}=\frac{e^{-E_{i} / k T}}{\sum_{i} e^{-E_{i} / k T}}
$$

Partition functions

The sums $\quad \sum_{i} e^{-\varepsilon_{i} / k T} \equiv q \quad$ Molecular partition function

$$
\sum_{i} e^{-E_{i} / k T} \equiv Q \quad \text { Canonical partition function }
$$

measure how probabilities are partitioned among different available states. They are unitless numbers.

Example: perfect atomic crystal lattice at $T \approx 0 \mathrm{~K}$
Set ground state energy $E_{0}=0$
All other state energies > $k T \Rightarrow Q \approx 1$

$$
P_{0}=\frac{e^{-E_{0} / k T}}{\left(e^{-E_{0} / k T}+e^{-E_{1} / k T}+\cdots\right)} \approx \frac{e^{-E_{0} / k T}}{e^{-E_{0} / k T}}=1
$$

Example: mole of atoms in the gas phase at room T
Could be treated quantum mechanically (particle in a box states) or classically (continuum of states of different kinetic energy).
Or use "lattice" model: divide available volume into atomic size volume elements $\sim 1 \AA^{3}=10^{-30} \mathrm{~m}^{3}$
If total volume $\sim 1 \mathrm{~m}^{3}$, then each atom has 10^{30} possible locations Molecular "translational" partition function is

$$
\sum_{i} e^{-\varepsilon_{i, \text { rans }} / k T}=q_{\text {rans }} \approx 10^{30}
$$

For a system of $\mathrm{N}=10^{24}$ atoms, how many microscopic states?
How many ways to assign atoms to selected locations:

$$
\left(10^{30}\right)\left(10^{30}\right)\left(10^{30}\right) \cdots\left(10^{30}\right)=\left(10^{30}\right)^{10^{24}}=10^{\left(30 \times 10^{24}\right)}=q_{\text {trans }}^{N}
$$

Huge number! Number of distinguishable states is less if the particles are indistinguishable: Have to divide by $\mathrm{N}!=10^{24}$!

$$
\begin{array}{ll}
Q_{\text {trans }}=q_{\text {trans }}^{N} & \text { distinguishable particles } \\
Q_{\text {trans }}=q_{\text {trans }}^{N} / N! & \text { indistinguishable particles }
\end{array}
$$

Stirling's approximation: $\ln \mathrm{N}!\approx \mathrm{N} / \mathrm{nN}-\mathrm{N}$ or $\mathrm{N}!\approx e^{-N} N^{N}$
So

$$
Q_{\text {trans }}=\frac{q_{\text {trans }}^{N}}{N!}=\frac{q_{\text {trans }}^{N}}{N^{N} e^{-N}}=\frac{\left(10^{30}\right)^{10^{24}}}{\left(10^{24}\right)^{10^{24}} e^{-10^{24}}}=\left(10^{6}\right)^{10^{24}} e^{10^{24}}=\left(10^{6}\right)^{10^{24}}\left(10^{0.4}\right)^{10^{24}}=10^{6.4 \times 10^{24}}
$$

Smaller, but still huge! So probability for any one system state is incredibly small. The probability is partitioned among a huge number of states.

Example: polymer configurations including protein folding.
e.g. just 4 polymer subunits with some favorable interaction energy $-\varepsilon_{\text {int }}$ (e.g. due to H bonding) if non-covalently bonded subunits are in neighboring "lattice" sites:

In this simple example, the "configurational" molecular partition function is

$$
q_{\text {conf }}=\sum_{\text {microstates }} e^{-\varepsilon_{i, \text { conf }} / k T}=e^{\varepsilon_{\mathrm{init}} / k T}+e^{0 / k T}+e^{0 / k T}+e^{0 / k T}=e^{\varepsilon_{\mathrm{int}} / k T}+3 e^{0 / k T}=e^{\varepsilon_{\mathrm{int}} / k T}+3
$$

The last expression suggests writing the partition function as a sum over energy levels ε_{i} instead of individual states, if we account for their degeneracies g_{i} :

$$
q_{\text {conf }}=\sum_{\substack{\text { energies } \\ \varepsilon_{i}}} g_{i} e^{-\varepsilon_{i} / k T}=e^{\varepsilon_{\text {int }} / k T}+3 e^{0 / k T}=e^{\varepsilon_{\text {int }} / k T}+3
$$

This can be done for the canonical partition function too, if we account for the degeneracies Ω_{i} of system energies E_{i} :

$$
Q=\sum_{\text {states }} e^{-E_{i} / k T}=\sum_{\substack{\text { energies } \\ E_{i}}} \Omega_{i} e^{-E_{i} / k T}
$$

