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STATISTICAL MECHANICS


Properties of 

Individual


Atoms/Molecules 

Hψ = Eψ 

MacroscopicStatistical Thermodynamic 
Properties 

Mechanics ΔG0 = Δ  H 0 − Δ  S 0T 

= −RT ln K p 

Goal of Statistical Mechanics: to describe macroscopic, thermodynamic 
properties in terms of microscopic atomic & molecular properties 

Properties of a system can be described at two levels: 

1) Macroscopic thermodynamic description e.g. p, V, n, CV, H, A, G,….. 

2) Microscopic description 
Specify the state of each molecule! 
Use classical or quantum mechanics 
More than 1023 variables! And need to update them every 10-15 s or so! 

Either classical or quantum description is impractical. Statistical mechanics 
describes macroscopic mechanics in statistical terms, i.e. in terms of “average” 
or “most probable” results. 

Probability of system in a state with given energy 

What is functional form? 


For independent energies εi and εj the joint probability should be the product: 


Pij(εi + εj) = Pi(εi)Pj(εj) 

( i + j ) C εi C εSuggests exponential form  Pij (εi + ε j )eC ε ε
= e e j  (C ≡ constant) 
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We expect high-energy states to be less probable than low-energy states, and 
that they become more probable at high T, i.e. ratio of εi to T is what matters. 

−C TSuggests form Pi ( )ε i ~ e εi (C ≡ constant > 0) 

kTOr more conventionally P ( ) ∝ −εiε e    Boltzmann probability distribution i i 

where k = R/NA = 1.38 x 10-16 erg/K is the Boltzmann constant 

For two states i and j with energies εi and εj, the relative probability is 
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To get absolute probabilities (not just relative), write  
kT −εi kT( ) ∝ e−εiPi ε i = ae 

Sum of probabilities for all the states must equal 1: 
kT 1 

i
i 1 a∑ 

i
e−εi ⇒ a =

∑e−εi∑P = = kT 

i 
kT 

⇒ Pi = e−ε
− 

i 

εi 
probability of being in state i  kT∑e 

i 

For a whole system or assembly of molecules, in a particular system state i 
(specified by indicating the state of each and every molecule) with energy Ei: 

−E kT  

P = e i 

i ∑e−Ei kT 

i 

Partition functions 

The sums ∑e−εi kT ≡ q Molecular partition function 
i 

−E kT  ∑e i ≡Q Canonical partition function 
i 
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measure how probabilities are partitioned among different available states. 
They are unitless numbers. 

Example: perfect atomic crystal lattice at T ≈ 0 K 
Set ground state energy E0 = 0 
All other state energies >> kT ⇒ Q ≈ 1 

−E kT  e−E0 kT  e 0 
P0 = ( −E kT  −E kT  +")

≈ 
e−E kT  0 

= 1 
e 0 + e 1 

Example: mole of atoms in the gas phase at room T 
Could be treated quantum mechanically (particle in a box states) or classically 
(continuum of states of different kinetic energy). 
Or use “lattice” model: divide available volume into atomic size volume elements 
~ 1 Å3 = 10-30 m3 

If total volume ~ 1 m3, then each atom has 1030 possible locations  
Molecular “translational” partition function is 

e ,∑ −εi trans  kT = qtrans ≈ 1030


i


For a system of N = 1024 atoms, how many microscopic states?  
How many ways to assign atoms to selected locations: 

30 30 30 30 30 N(10 )(  10 )(  10 )"(10 ) = (10 )1024 

= 10(30x 1024 ) = qtrans 

Huge number! Number of distinguishable states is less if the particles are 
indistinguishable: Have to divide by N! = 1024! 

NQtrans = qtrans             distinguishable particles

N
 N !     indistinguishable particles Qtrans = qtrans 

Stirling’s approximation: lnN! ≈ NlnN – N or N! ≈ e-NNN 

So 
N N 30 1024 

24 24 24qtrans qtrans (10 ) 6 10 10  24 6 10 0.4  10 6.4  x 10  24Qtrans = 
N ! 

= 
N Ne −N =

(10 )1024 

e 24 
= (10 ) e = (10 ) (10 ) = 10 

24 −10 
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Smaller, but still huge! So probability for any one system state is incredibly 
small. The probability is partitioned among a huge number of states.   

Example: polymer configurations including protein folding.  
e.g. just 4 polymer subunits with some favorable interaction energy -εint (e.g. due 
to H bonding) if non-covalently bonded subunits are in neighboring “lattice” 
sites: 

Molecular state i: 

Energy εi: -εint  0 0 0 

Degeneracy gi: 1 

In this simple example, the “configurational” molecular partition function is 

kT,i conf  kT εint qconf = ∑ e 
−ε 

= e kT + e0 kT + e0 kT + e0 kT = eεint kT + 3e0 kT = eεint + 3 
microstates 

i 

The last expression suggests writing the partition function as a sum over energy 
levels εi instead of individual states, if we account for their degeneracies gi: 

kT kTkT = eεintq = g e−εi + 3e0 kT = eεint + 3conf ∑ i

energies


εi 

This can be done for the canonical partition function too, if we account for the 
degeneracies Ωi of system energies Ei: 

kT Q = ∑ e−Ei kT = ∑ Ωie−Ei


states energies

i Ei


3 

All the thermodynamic functions can be calculated from Q!! 




