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MODEL SYSTEMS 
Starting with QM energy levels for molecular translation, rotation, & vibration, 
solve for q and Q, & all the thermodynamics, for these degrees of freedom.  
The results are the fundamentals of molecular statistical mechanics. 

We’ll derive the results for a classical model that maps onto QM vibrations. 
Then we’ll compare to results (given, not derived) for translation and rotation.   

Double-stranded polymer model  
Each monomer in one strand interacts with a monomer in the other strand. 

Interaction energy for each monomer pair is –ε0. 

The strands can “unzip” from one end, rupturing the interactions of the end 

monomers, then the next ones, then the next, and so on. Each ruptured

interaction raises the energy by ε0. The three lowest-energy states and the 

energy levels are illustrated below.  
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Nondegenerate evenly spaced levels, separated by energy ε0: ε = nε0 (n = integer) 
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For a very long polymer, there is a large number of levels. Then we can extend 
the sum over states in qconf to infinity because the highest energies are much 
bigger than kT anyway (so the corresponding terms in the sum are negligible).   

∞ 

qconf = ∑e−εn kT n 0 kT = 1 + e−ε0 kT 2 0≈ ∑e− ε + e− ε kT 3 0+ e− ε kT +" 
n n 

= +1 e−ε0 kT −ε 0 kT ) + (e−ε0 kT 3 2 3 

− 

1 −ε0 kT+ (e 2 ) +" ≡ 1 + x + x + x +" = 
1 x  

  where x ≡ e 

1 qconf = 
1 e−ε0 kT− 

So qconf takes a very simple closed form. Everything else follows. 
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e−ε0 kT 

= Nε 
1 

) ( )⎜kT ⎠⎟ 0 1 e  
Uconf = NkT  

dT 
= −  NkT  

(1 e−ε0 kT −e 
⎝ 2 ( − −ε 0 kT ) 0 (eε0 kT − 1)− 

2ε0 kT 2dUconf 
−e (−ε  0 kT  ) ⎛ ε0 ⎞ eε kT0 
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Particularly important are Uconf and CVconf and their high-T and low-T limits. Both 
quantities scale with N, so we have them per molecule too. 

Low-T limit: Uconf = 0, CVconf = 0. As we’ve seen before, at low T all the molecules 
are in the ground state, and a slight increase in T leaves them there, so the 
system energy does not increase. 

High-T limit: lim U = ε  
1 , lim C = Nk 

T→∞ conf N 0 (1 + ε0 kT  −1) = NkT 
T→∞ V conf 
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Once kT exceeds the energy spacing, then further increase in T increases the 
occupation of higher levels, but the amount of energy increase with T doesn’t 
change any further: Uconf ∂ T, CVconf is T-independent in the high-T limit.  

Entropy & probability distributions 
Low-T limit: Sconf = 0 = klnΩconf since only the ground state is occupied. 
High-T limit: 

lim S = Nk  
⎡
−ln  1  − 1 − ε  kT  )) + 

ε0 kT 
⎥
⎤ 
= Nk  ⎡−ln  (ε kT  + 1)⎤⎦T→∞ conf ⎢

⎣ 
( ( 0 1 + ε0 kT  − 1⎦

⎣ 0 

(= Nkln kT ε = kln kT 0 ) ( ε0 )
N 

Note high-T limits for q and Q: 
N 

qconf 1 lim Qconf lim qconf = 
kT , lim Qconf 

⎛kT ⎞lim = =  = ⎜ ⎟T 0  T→0 T→∞  ε0 T→∞  ⎝ ε0 ⎠→ 

q is a measure of how many states the molecule has thermal access to.

For kT >> εo, it’s just the ratio kT/εo


If kT = 10εo then molecules have thermal access to ~ 10 states.  

Boltzmann distribution Pi(εi) gives probabilities for each state: 


Pi(εi) 

0 1 2 3 4 5 6 7 8  9 10  11 12 13 14 15 16 17 18  xε0 

Molecular energy εi 

Most likely molecular energy ε is 0 (for nondegenerate levels) 
Wide range of molecular levels may be occupied 
Average molecular energy <ε> >> 0 

System energy U = N<ε> >> 0 
Individual molecular energies vary widely, but system energy does not 

How come?  
i iRecall Q = ∑ e−E kT  = ∑ ΩE e−E  kT  

i 
system system

states i energies E i
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Also recall iP = 
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Measurement of macroscopic system energy always yields the same result 
⇒ P(E) ≈ 1 for that system energy! 

System degeneracy Ω(Ei) increases sharply as system energy Ei increases. 
e.g. Ω(0) = 1; Ω(ε0) = N; Ω(2ε0) = N(N – 1)/2 + N ≈ N2/2; etc.

This weights probability in favor of higher system energy.  

Boltzmann factor decreases as system energy increases. 

This weights probability in favor of lower system energy. 

Average is a balance between these factors. Probability is very sharply peaked! 


How much does the system energy fluctuate?  

Molecular average energy = <ε>, molecular standard deviation σ ≈ <ε> 

System energy = N x molecular average energy = N<ε> 

System standard deviation = 

Relative system energy variation = 

N σ ≈ N <ε> 
12 

12 
24 

N N  10  10
N  N  10  

−ε 
= ≈ = 

ε 

Fluctuations are immeasurably small for a macroscopic system! 

System entropy S = −k∑p lnp   for system at constant T  i i

i


But we can approximate S = klnΩ  where Ω(E) is the degeneracy for the most 
probable level. This is OK because the range of system energies is very small.  

Vibrational partition function & thermodynamics 
The double-stranded polymer model used here gives the same energies as 
quantum mechanical vibrational modes of molecules and materials.  

Classical vibration:  E = ½mv2 + ½kx2 = K.E. + P.E., where m is mass, v is velocity, k 
is force constant (for this section only, normally it’s the Boltzmann constant), 
and x is displacement. 

Natural resonance frequency ν =  
1 k 

0 2π m 
Vibrational amplitude & energy can take on any value, continuously.  
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QM vibrational states: nondegenerate, spaced by equal amounts. Spacing is 
1 k h ª Planck’s constant ε =0 hν0 = h

2π m 

We’ve already done this problem! We can define the zero of vibrational energy 
as the lowest vibrational level, and we get identical results.  

∞ 
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Results are important for molecular & material vibrations.  

Vibrational energy & heat capacity results & limiting values: 
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Low-T limit: Uvib = 0 (= N(½ε0) with the zero as usually defined), CVvib = 0. 

High-T limit: lim U = NkT , lim C = Nk 
T→∞ vib T→∞ V vib 

Molecular vibrational frequencies ~ 
1000-3000 cm-1. kT at 300 K ~ 200 cm-1. 
⇒ most molecules in ground vibrational 
states at room T (low-T limit).	 CVvib 

3R 

Crystal lattice acoustic vibrational 
frequencies ~ 30 cm-1 ⇒  most crystals 
are in the high-T limit.  For N atoms in 
an atomic crystal, there are 3N 
vibrational modes, so at room T, CV = 
3Nk = 3nR. This was used to determine kT ε 0 

molecular weights! 

No one could explain why CV → 0 at low T until Einstein suggested in 1905 that 
if energy was quantized, not continuous, then kT can be much lower than the 
first excited state energy. (Not possible if energy is continuous.) 

Molecular translation & rotation, classical equipartition of energy 
Results are derived in statistical mechanics course 5.62 (and in your text). 
One key result: for each degree of freedom (3 translational, 2 or 3 rotational), 
high-T limit for energy is <ε> = ½kT & for heat capacity is Cv = ½k. 

<εtrans> = ½kT x 3 = 3/2 kT 

<εrot> = ½kT x 2 = kT (linear) or ½kT x 3 = 3/2 kT (nonlinear) 

<εvib> = kT per vibrational mode


This is the classical equipartition of energy. Why does it come about?  

Each degree of freedom has kinetic energy given classically by ½mv2. (½Iω2 for 

rotation where I = moment of inertia and ω = angular velocity.) 

Vibrational degrees of freedom: kinetic energy ½mv2 & potential energy ½kx2. 

All these “squared” energy terms can be written in the form ay2. 
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The average molecular energy for any of these degrees of freedom is given by  
∞ ∞ 

∑e−ε i kT<ε> = ε = ∑εie
−εi kT


i
 i 

But if the levels are spaced close together relative to kT, then we can convert 
the sums into integrals. If we treat the energy classically then it’s just 

∞ −ay2 kT ∞ 2 

ε = ∫−∞∞ 

ay2 

− 

e
ay2 kT 

dy 
= 

kT∫
∞
−∞ 

x2e
2 

−x dx 
where x2 = ay2/kT 


e
 dy ∫ e−x dx∫−∞ −∞ 

Integrate numerator by parts 

∞ 2 ∞ 2 2 2 x2e−x dx = x xe −x dx [x ≡ u, xe −x ≡ dv, v = −1/2 e −x ] ABC +∫−∞ ∫−∞ ( ) ( ) 
1

= −  xe−x2 ∞
−∞ + 

1 
∫
∞ e−x2dx = 

1 
∫
∞ e−x2dx 

−∞ −∞2 2 2 

⇒  <ε> = ½kT  

½kT energy per kinetic and potential energy degree of freedom in high-T limit 




