MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Kinetics: Reaction Rates, Orders, Half Lives

$$
a A+b B \rightarrow c C+d D
$$

Rate of Reaction:

$$
\text { Rate }=-\frac{1}{\mathrm{a}} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\frac{1}{\mathrm{~b}} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{d} t}=\frac{1}{\mathrm{c}} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}=\frac{1}{\mathrm{~d}} \frac{\mathrm{~d}[\mathrm{D}]}{\mathrm{d} t}
$$

$$
\text { Experimentally } \Rightarrow \text { Rate }=\mathrm{k} \prod_{\mathrm{i}=1}^{N} C_{i}^{\gamma_{i}}
$$

Where

$$
\begin{aligned}
& \mathrm{k}=\text { rate constant } \\
& C_{\mathrm{i}}=\text { Concentration of Reactant " } \mathrm{i} \text { " } \\
& \gamma_{\mathrm{i}}=\text { Order of reaction with respect to } \\
& \quad \text { reactant " } \mathrm{i} \text { " }
\end{aligned}
$$

$$
\sum_{i} \gamma_{i}=\text { Overall rate of reaction }
$$

I) Zero Order Reactions (rare)

$A \rightarrow$ products

$$
-\frac{d[A]}{d t}=k
$$

$\{k$ is in [moles/(liter sec)]\}
$[A]=-k t+[A]_{0}$

II) First Order Reactions

$A \rightarrow$ products

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t}=\mathrm{k}[\mathrm{~A}]
$$

$\{k$ is in $[1 / s e c]\}$
$[A]=[A]_{0} e^{-k t}$
$\ln [A]=-k t+\ln [A]_{0}$

III) Second Order Reactions

a) Second order in one component

A \rightarrow products
$-\frac{d[A]}{d t}=k[A]^{2}$
$\frac{1}{[A]}=\frac{1}{[A]_{0}}+k t$

$t_{1 / 2}=1 /\left(k[A]_{0}\right)$

b) First order in each of two components

$A+B \rightarrow$ products

$$
-\frac{d[A]}{d t}=k[A][B]
$$

$$
k t=\frac{1}{[A]_{0}-[B]^{2}} \ln \frac{\left.[A][B]_{0}\right]}{[B]} \quad[A]_{0} \neq\left[B B_{0}\right.
$$

Special cases:

i) $[A]_{0}=[B]_{0} \Rightarrow \begin{aligned} & \frac{1}{[A]}=\frac{1}{[A]_{0}}+k+ \\ & {[A]=[B]}\end{aligned}$

This is like $2^{\text {nd }}$ order in one component
ii) $[B]_{0} \ll[A]_{0} \Rightarrow[B]=[B]_{0} e^{-k^{\prime}+}$
where $k^{\prime}=[A]_{0} k$
This is pseudo $1^{\text {st }}$ order

Determining Orders of Reactions

I) Getting the data
a) Quench the reaction, measure concentrations
b) For gas phase, measure pressure vs. time
c) Spectroscopically follow reactants/products

Etc...
II) Analyzing the data
A) Reactions with one reactant:

$$
A \rightarrow \text { products }
$$

a) Plot or analyze [A] vs. \dagger
$\ln [A]$ vs. \dagger
1/[A] vs. \dagger
and find which gives a straight line.
b) Half-life method: measure $\dagger_{1 / 2}$ vs. $[A]_{0}$

$$
\begin{aligned}
& 1^{\text {st }} \text { order } \rightarrow t_{1 / 2} \propto[A]_{0}^{0} \\
& 2^{\text {nd }} \text { order } \rightarrow t_{1 / 2} \propto[A]_{0}^{-1} \\
& \text { etc.... }
\end{aligned}
$$

c) Multiple lifetimes $\left(t_{3 / 4}\right.$ and $t_{1 / 2}$) (at $t_{3 / 4},[A]=[A]_{0} / 4$)

$$
\begin{aligned}
& 1^{\text {st }} \text { order } \rightarrow t_{3 / 4}=(2 \ln 2) / k \Rightarrow \frac{t_{3 / 4}}{t_{1 / 2}}=2 \\
& 2^{\text {nd }} \text { order } \rightarrow t_{3 / 4}=3 /\left([A]_{0} k\right) \Rightarrow \frac{t_{3 / 4}}{t_{1 / 2}}=3
\end{aligned}
$$

B) Reactions with more than one reactant:

$$
\text { e.g. } A+B+C \rightarrow \text { products }
$$

a) Initial Rate Method

For $[A]$ 。

$$
\left.\frac{\Delta[A]}{\Delta t}\right|_{t=0}=R_{0} \approx k[A]_{0}^{\alpha}[B]_{0}^{\beta}[C]_{0}^{\gamma}
$$

For $[A]_{0}^{\prime}$

$$
\left.\frac{\Delta[A]^{\prime}}{\Delta t}\right|_{t=0}=R_{0}^{\prime} \approx k[A]_{0}^{/ \alpha}[B]_{0}^{\beta}[C]_{0}^{\gamma}
$$

Experimentally determine $\frac{R_{0}}{R_{0}^{\prime}}=\left(\frac{[A]_{0}}{[A]_{0}^{\prime}}\right)^{\alpha}$

$$
\begin{aligned}
& \text { If } 2[A]_{0}^{\prime}=[A]_{0} \text { then, if } \frac{R_{0}}{R_{0}^{\prime}}=1 \Rightarrow \alpha=1 \\
& \qquad \begin{aligned}
& \text { if } \frac{R_{0}}{R_{0}^{\prime}}=\sqrt{2} \Rightarrow \alpha=1 / 2 \\
& \text { if } \frac{R_{0}}{R_{0}^{\prime}}=2 \Rightarrow \alpha=1 \\
& \text { if } \frac{R_{0}}{R_{0}^{\prime}}=4 \Rightarrow \alpha=2 \\
& \text { etc... }
\end{aligned}
\end{aligned}
$$

b) Flooding or Isolation (goal is to try to make problem look like a onereactant system)

take $[A]_{0} \ll[B]_{0},[C]_{0}$
e.g. flood system with B and C

Then $[B] \sim[B]_{0}$ and $[C] \sim[C]_{0}$

$$
\begin{aligned}
& \text { So that }-\frac{d[A]}{d t} \approx k^{\prime}[A]^{\alpha} \\
& \text { Where } k^{\prime}=k[B]_{0}^{\beta}[C]_{0}^{\gamma}
\end{aligned}
$$

The reaction then becomes pseudo α-order with one reactant.

