MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Complex Reactions and Mechanisms

Mechanisms: A series of elementary steps that make up a reaction.
e.g. for $A+B+2 C \rightarrow D+E$

Mechanism could be: $\quad \begin{aligned} & A+B \rightarrow F \\ & F+C \rightarrow G+D \\ & G+C \rightarrow E\end{aligned} \quad\left\{\begin{array}{l}\text { Elementary } \\ \text { Single Step } \\ \text { Reactions }\end{array}\right.$
F and G are reaction intermediates

Molecularity: The number of molecules that come together to react in one elementary step

For single step elementary reactions, Molecularity = Order
$A \rightarrow$ products $\quad 1^{\text {st }}$ order rate $=k[A] \quad$ Unimolecular
$A \rightarrow$ products $\quad 2^{\text {nd }}$ order rate $=k[A]^{2} \quad$ Bimolecular
$A+B \rightarrow$ prod. $\quad 2^{\text {nd }}$ order rate $=k[A][B] \quad$ Bimolecular
$A+B+C \rightarrow$ prod. $3^{\text {rd }}$ order rate $=k[A][B][C]$ Termolecular Etc...

Molecularity is the number of molecules that need to collide, and in one step form the products.

Some Simple Mechanisms

I) Parallel Reactions

a) Parallel $1^{\text {st }}$ order reactions

$$
\begin{gathered}
{[A]=[A]_{0} e^{-\left(k_{1}+k_{2}\right) t} \quad[B]=\frac{k_{1}[A]_{0}}{k_{1}+k_{2}}\left(1-e^{-\left[k_{1}+k_{2}\right] t}\right)} \\
{[C]=\frac{k_{2}[A]_{0}}{k_{1}+k_{2}}\left(1-e^{-\left[k_{1}+k_{2}\right] \dagger}\right)}
\end{gathered}
$$

Branching Ratio:

$$
\frac{[B]}{[C]}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}
$$

Time
b) Parallel $1^{\text {st }}$ and $2^{\text {nd }}$ order reactions

$$
\begin{aligned}
A \xrightarrow{k_{1}} B & \\
A \xrightarrow{k_{2}} C & \frac{d[B]}{d t}=k_{1}[A] \\
& -\frac{d[A]}{d t}=k_{1}[A]+k_{2}[A]^{2} \\
& {[A]=\frac{k_{2}[A]^{2}}{e^{k_{1} t}\left(k_{1}+k_{2}[A]_{0}\right)-k_{2}[A]_{0}} }
\end{aligned}
$$

Limiting cases:
i) $k_{2}[A]_{0} \ll k_{1} \quad \Rightarrow \quad[A]=[A]_{0} e^{-k_{1} \dagger}$
ii) $k_{2}[A]_{0} \gg k_{1} \Rightarrow \frac{1}{[A]}=\frac{1}{[A]_{0}}+k_{2} \dagger$
c) Consecutive or Series Reactions ($1^{\text {st }}$ order)

$$
\begin{aligned}
& -\frac{d[A]}{d t}=\mathrm{k}_{1}[A] \quad-\frac{d[C]}{d t}=\mathrm{k}_{2}[B] \\
& \frac{d[B]}{d t}=k_{1}[A]-k_{2}[B] \\
& {[A]=[A]_{0} e^{-k_{1} t} \quad[B]=\frac{k_{1}[A]_{0}}{k_{1}-k_{2}}\left(e^{-k_{1} \dagger}-e^{-k_{2} t}\right) \text { with } k_{1} \neq k_{2}} \\
& {[C]=[A]_{0}\left\{1+\frac{1}{\mathrm{k}_{1}-\mathrm{k}_{2}}\left(\mathrm{k}_{2} e^{-\mathrm{k}_{1} \dagger}-\mathrm{k}_{1} \mathrm{e}^{-\mathrm{k}_{2} \dagger}\right)\right\}} \\
& t_{\text {max }}^{B}=\frac{\ln \left(k_{1} / k_{2}\right)}{k_{1}-k_{2}} \text { with } k_{1} \neq k_{2} \quad[B]_{\max }=\frac{k_{1}}{k_{2}}[A]_{0} e^{-k_{1} t_{\text {max }}^{B}}
\end{aligned}
$$

Limiting cases:

i) $k_{1}=k_{2}$ (homework)
ii) $k_{1} \gg k_{2}$

$$
[A]=[A]_{0} e^{-k_{1} t} \quad[B] \approx[A]_{0} e^{-k_{2} t}
$$

$$
[C] \approx[A]_{0}\left(1-e^{-k_{2} t}\right)
$$

Time
$B \xrightarrow{\mathrm{k}_{2}} C$ is the rate determining step
iii) $k_{1} \ll k_{2}$

$$
[A]=[A]_{0} e^{-k_{1} t} \quad[B] \approx \frac{k_{1}}{\mathrm{k}_{2}}[A]
$$

$[C] \approx[A]_{0}-[A]$

Time
$A \xrightarrow{k_{1}} B$ is the rate limiting step

