MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Thermochemistry

- Goal: To predict ΔH for every reaction, even if it cannot be carried out in the laboratory

The heat of reaction $\Delta H_{r x} \quad$ is the ΔH for the isothermal reaction at constant pressure.
e.g. $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}(s, T, p)+3 \mathrm{H}_{2}(g, T, p)=2 \mathrm{Fe}(s, T, p)+3 \mathrm{H}_{2} \mathrm{O}(l, T, p)$

$$
\begin{gathered}
\Delta H_{r x}(T, p)=2 \bar{H}_{F e}(T, p)+3 \bar{H}_{H_{2} O}(T, p)-3 \bar{H}_{H_{2}}(T, p)-\bar{H}_{F_{e} O_{3}}(T, p) \\
{\left[\Delta H_{r x}=H(\text { products })-H(\text { reactants })\right]}
\end{gathered}
$$

We cannot know \bar{H} values because enthalpy, like energy, is not measured on an absolute scale. We can only measure differences in enthalpy.

- Define a reference scale for enthalpy
$\bar{H}(298.15 \mathrm{~K}, 1$ bar $) \equiv 0 \quad$ For every element in its most stable form at 1 bar and 298.15K
$\left.\begin{array}{ll}\text { e.g. } & \bar{H}_{H_{2(g)}}^{\circ}(298.15 K)=0 \\ \bar{H}_{C(\text { graphite })}^{\circ}(298.15 K)=0\end{array}\right\} \quad$ The "o" means 1 bar
- $\Delta H_{f}^{\circ}(298.15 K)$: We can now write reactions to form every compound from its constituent atoms. The heat of reaction is the heat of formation of 1 mole of that compound from the constituent elements in their most stable forms.

Example (let $T=298.15 \mathrm{~K}$)
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+\frac{1}{2} \mathrm{Br}_{2}(1, T, 1$ bar $)=\mathrm{HBr}(9, T, 1$ bar $)$

$$
\begin{aligned}
& \Delta H_{r x}=\Delta \bar{H}_{f}^{\circ} \text { (products) }-\Delta \bar{H}_{f}^{\circ}(\text { reactants }) \\
& =\Delta \bar{H}_{f, H B r}^{\circ}(g, T)-\underbrace{\frac{1}{2} \Delta \bar{H}_{f, H_{2}}^{\circ}(g, T)-\frac{1}{2} \Delta \bar{H}_{f, B_{r}}^{\circ}(C, T)}_{0 \text { - lements in most stable forms }}=\Delta \bar{H}_{f, H B r}^{\circ}(g, T)
\end{aligned}
$$

We can tabulate $\Delta H_{f}^{\circ}(298.15 K)$ values for all known compounds.

We can calculate $\Delta \bar{H}_{r x}^{\circ}(T)$ for any reaction ($T=$ 298.15K).
e.g.
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, \mathrm{T}, 1 \mathrm{bar})$

- First decompose reactants into elements
- Second put elements together to form products
- Use Hess's law [A statement of the fact that because H is a function of state, we can add ΔH 's around paths.]
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{C}_{\text {graphite }}(\mathrm{s}, \mathrm{T}, 1 \mathrm{bar})+2 \mathrm{H}_{2}(\mathrm{~g}, \mathrm{~T}, \mathrm{p}) \quad \Delta H_{\mathrm{I}}$
$2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1$ bar $) \quad \Delta H_{\text {II }}$
$C_{\text {graphite }}(s, T, 1$ bar $)+\mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1$ bar $)=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1$ bar $) \quad \Delta H_{\text {III }}$ $2 \mathrm{H}_{2}(g, T, p)+\mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1$ bar $)=2 \mathrm{H}_{2} \mathrm{O}(l, T, 1$ bar $) \quad \Delta H_{\text {Iv }}$
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{H}_{2} \mathrm{O}(1, T, 1 \mathrm{bar})$

$$
\begin{aligned}
& \Delta H_{r x}=\Delta H_{I}+\Delta H_{I I}+\Delta H_{I I I}+\Delta H_{I V} \\
& \Delta H_{I}=\bar{H}_{C}+2 \bar{H}_{H_{2}}-\bar{H}_{C H_{4}}=-\Delta H_{f, C H_{4}}^{\circ} \\
& \Delta H_{I I}=\bar{H}_{O_{2}}-\bar{H}_{O_{2}}=0 \\
& \Delta H_{I I I}=\bar{H}_{c O_{2}}-\bar{H}_{C}-\bar{H}_{O_{2}}=\Delta H_{f, C O_{2}}^{\circ} \\
& \Delta H_{I V}=2 \bar{H}_{H_{2} \mathrm{O}}-2 \bar{H}_{H_{2}}-\bar{H}_{O_{2}}=2 \Delta H_{f, \mathrm{H}_{2} \mathrm{O}}^{\circ} \\
& \therefore \quad \Delta H_{r X}=2 \Delta H_{f, \mathrm{H}_{2} \mathrm{O}}^{\circ}+\Delta H_{f, C \mathrm{C}_{2}}^{\circ}-\Delta H_{f, C H_{4}}^{\circ}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \Delta H_{r x}=\sum_{i} v_{i} \Delta H_{f, i}^{\circ}(\text { products })-\sum_{i} v_{i} \Delta H_{f, i}^{\circ}(\text { reactants }) \\
& v \equiv \text { stoichiometric coefficient }
\end{aligned}
$$

- ΔH at constant p and for reversible process is $\Delta H=q_{p}$
$\Rightarrow \quad$ The heat of reaction is the heat flowing into the reaction from the surroundings

If $\Delta H_{r x}<0, \quad q_{p}<0 \quad$ heat flows from the reaction to the surroundings (exothermic)

If $\Delta H_{r x}>0, \quad q_{p}>0$ heat flows into the reaction from the surroundings (endothermic)

Temperature dependence of $\Delta H_{r x}$

$$
\begin{aligned}
& \text { Recall }\left(\frac{\partial H}{\partial T}\right)_{p}=C_{p} \\
& \therefore \quad\left(\frac{\partial \Delta H}{\partial T}\right)_{p}=\Delta C_{p}=\sum_{i} v_{i} C_{p, i}(\text { products })-\sum_{i} v_{i} C_{p, i} \text { (reactants) }
\end{aligned}
$$

e.g.
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{H}_{2} \mathrm{O}(1, T, 1 \mathrm{bar})$
$\Delta C_{p}=\bar{C}_{p, C O_{2}}(\mathrm{~g}, T, 1 \mathrm{bar})+2 \bar{C}_{p, \mathrm{H}_{2} O}(C, T, 1 \mathrm{bar})-\bar{C}_{p, C H_{4}}(\mathrm{~g}, T, 1 \mathrm{bar})-2 \bar{C}_{p, \mathrm{O}_{2}}(\mathrm{~g}, T, 1 \mathrm{bar})$

$$
\int_{T_{1}}^{T_{2}} \underbrace{\left.\frac{\partial \Delta H}{\partial T}\right)_{p}}_{\Delta C_{P}} d T=\Delta H\left(T_{2}\right)-\Delta H\left(T_{1}\right)
$$

$$
\Delta H\left(T_{2}\right)=\Delta H\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{p} d T
$$

Especially simple when ΔC_{p} is T-independent

